检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Todd COCHRANE 郑志勇
机构地区:[1]Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA [2]Department of Mathematics, Tsinghua University, Beijing 100084, China
出 处:《Science China Mathematics》2001年第8期1003-1015,共13页中国科学:数学(英文版)
基 金:Tsinghua University and the NNSF of China for supporting his visit to China during the Fall of 2000;This work was supported by the National Natural Science Foundation of China (Grant No. 19625102).
摘 要:We obtain upper bounds for mixed exponential sums of the type $S(\chi ,f,p^m ) = \sum\nolimits_{x = 1}^{p^n } {\chi (x)e} _{p^m } (ax^n + bx)$ where pm is a prime power with m? 2 and X is a multiplicative character (mod pm). If X is primitive or p?(a, b) then we obtain |S(χ,f,p m)| ?2np 2/3 m . If X is of conductor p and p?( a, b) then we get the stronger bound |S(χ,f,p m)|?np m/2.We obtain upper bounds for mixed exponential sums of the type S(x,f,pm) =bx)where pm is a prime power with m ≥ 2 and x is a multiplicative character 2(mod pm). If x is primitive or p\( a, b) then we obtain | S(x, f, pm) | ≤2np2-3m. If x is of conductor p and p\( a, b) then we get the stronger bound | S(x, f, pm) | ≤ npm/2.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38