出 处:《Chemical Research in Chinese Universities》2001年第2期159-167,共9页高等学校化学研究(英文版)
基 金:the National Natural Sciences Foundation of China(No. 29835110).
摘 要:Anion adsorption behavior on Au colloid surface was investigated in virture of depositing monolayers of Au colloid on the self-assembled monolayers of cysteamine on a gold electrode. Po- tential-dependent anion adsorption-desorption waves via the nonfaradaic current were obtained by means of cyclic voltammetry at Au coltoid-modified gold electrodes in the potential range of -2 00-600 mV. The adsorption sequence in the order of adsorption peak potentials (Epa) is OH- >citrate3 ->H2PO4- >Cl->SO42->ClO4->NO3-. Among them, citrate3- exhibited an en- tirely irreversible adsorption. A rise in temperature can increase the rates of adsorption-desorp- tion and improve the reversibility of the adsorption-desorption of Cl-, SO42-, ClO4-, NO3- and H2PO-4. The adsorption peak potentials shifted more negatively for Ca. 63 mV as the anion con- centrations were increased by a decade factor. The change of pH from 7 to 1 slightly affected the adsorption peak potentials of Cl- and NO3-. Au colloids with a smaller size (16 nm) gave rise to a better reversibility of the adsorption-desorption process and lower adsorption currents. The ex- perimental results of citrate ions adsorption on Au colloid surface show that Au colloids with a smaller size prepared by sodium citrate method exhibited a higher stability in the solution in com- parison to those with larger sizes because of its higher ratio of charge/mass. In other words, the smaller gold nanoparticles are covered with citrate ions monolayer that can also be formed at larg- er gold nanoparticles by means of electrochemical scan.Anion adsorption behavior on Au colloid surface was investigated in virture of depositing monolayers of Au colloid on the self-assembled monolayers of cysteamine on a gold electrode. Po- tential-dependent anion adsorption-desorption waves via the nonfaradaic current were obtained by means of cyclic voltammetry at Au coltoid-modified gold electrodes in the potential range of -2 00-600 mV. The adsorption sequence in the order of adsorption peak potentials (Epa) is OH- >citrate3 ->H2PO4- >Cl->SO42->ClO4->NO3-. Among them, citrate3- exhibited an en- tirely irreversible adsorption. A rise in temperature can increase the rates of adsorption-desorp- tion and improve the reversibility of the adsorption-desorption of Cl-, SO42-, ClO4-, NO3- and H2PO-4. The adsorption peak potentials shifted more negatively for Ca. 63 mV as the anion con- centrations were increased by a decade factor. The change of pH from 7 to 1 slightly affected the adsorption peak potentials of Cl- and NO3-. Au colloids with a smaller size (16 nm) gave rise to a better reversibility of the adsorption-desorption process and lower adsorption currents. The ex- perimental results of citrate ions adsorption on Au colloid surface show that Au colloids with a smaller size prepared by sodium citrate method exhibited a higher stability in the solution in com- parison to those with larger sizes because of its higher ratio of charge/mass. In other words, the smaller gold nanoparticles are covered with citrate ions monolayer that can also be formed at larg- er gold nanoparticles by means of electrochemical scan.
关 键 词:Colloidal gold Self-assembled monolayer Gold electrode Electrode dynamics
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...