LONG-TIME CONVERGENCE OF GENERALIZED DIFFERENCE METHOD FOR NAVIER-STOKES EQUATIONS  

LONG-TIME CONVERGENCE OF GENERALIZED DIFFERENCE METHOD FOR NAVIER-STOKES EQUATIONS

在线阅读下载全文

作  者:Wu Haijun(武海军) Li Ronghua(李荣华) 

机构地区:[1]Department of Mathematics, Jiling University, Changchun 130012 Institute of Mathematics, Jilin University, Changchun 130012

出  处:《Numerical Mathematics A Journal of Chinese Universities(English Series)》2001年第2期193-208,共16页

基  金:The project supported by Laboratory of Computational Physics,Institute of Applied Physics & Computational Mathematics,T.O.Box 80 0 9,Beijing 1 0 0 0 88

摘  要:In this paper, we first provide a generalized difference method for the 2-dimensional Navier-Stokes equations by combing the ideas of staggered scheme m and generalized upwind scheme in space, and by backward Euler time-stepping. Then we apply the abstract framework of to prove its long-time convergence. Finally, a numerical example for solving driven cavity flows is given.In this paper, we first provide a generalized difference method for the 2-dimensional Navier-Stokes equations by combing the ideas of staggered scheme m and generalized upwind scheme in space, and by backward Euler time-stepping. Then we apply the abstract framework of to prove its long-time convergence. Finally, a numerical example for solving driven cavity flows is given.

关 键 词:generalized DIFFERENCE method  staggered scheme  UPWIND scheme  LONG-TIME covergence. 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象