On localization with robust power control for safety critical wireless sensor networks  

On localization with robust power control for safety critical wireless sensor networks

在线阅读下载全文

作  者:Michael J. WALSH Anthony FEE John BARTON Brendan O'FLYNN Martin J. HAYES Cian O'MATHUNA 

机构地区:[1]Clarity Center for Web Technologies,Microsystems Centre-Tyndall National Institute Lee Maltings,University College Cork,Cork,Ireland [2]Wireless Access Research Center,University of Limerick,Limerick,Ireland

出  处:《控制理论与应用(英文版)》2011年第1期83-92,共10页

基  金:Tyndall is a part of the CLARITY CSET supported by Science Foundation Ireland (No. 07/CE/I1147)

摘  要:A hybrid methodology is proposed for use in low power, safety critical wireless sensor network applications, where quality-of-service orientated transceiver output power control is required to operate in parallel with radio frequency-based localization. The practical implementation is framed in an experimental procedure designed to track a moving agent in a realistic indoor environment. An adaptive time synchronized approach is employed to ensure the positioning technique can operate effectively in the presence of dataloss and where the transmitter output power of the mobile agent is varying due to power control. A deterministic multilateration-based positioning approach is adopted and accuracy is improved by filtering signal strength measurements overtime to account for multipath fading. The location estimate is arrived at by employing least-squares estimation. Power control is implemented at two separate levels in the network topology. First, power control is applied to the uplink between the tracking reference nodes and the centralized access point. A number of algorithms are implemented highlighting the advantage associated with using additional feedback bandwidth, where available, and also the need for effective time delay compensation. The second layer of power control is implemented on the uplink between the mobile agent and the access point and here quantifiable improvements in quality of service and energy efficiency are observed. The hybrid paradigm is extensively tested experimentally on a fully compliant 802.15.4 testbed, where mobility is considered in the problem formulation using a team of fully autonomous robots.A hybrid methodology is proposed for use in low power, safety critical wireless sensor network applications, where quality-of-service orientated transceiver output power control is required to operate in parallel with radio frequency-based localization. The practical implementation is framed in an experimental procedure designed to track a moving agent in a realistic indoor environment. An adaptive time synchronized approach is employed to ensure the positioning technique can operate effectively in the presence of dataloss and where the transmitter output power of the mobile agent is varying due to power control. A deterministic multilateration-based positioning approach is adopted and accuracy is improved by filtering signal strength measurements overtime to account for multipath fading. The location estimate is arrived at by employing least-squares estimation. Power control is implemented at two separate levels in the network topology. First, power control is applied to the uplink between the tracking reference nodes and the centralized access point. A number of algorithms are implemented highlighting the advantage associated with using additional feedback bandwidth, where available, and also the need for effective time delay compensation. The second layer of power control is implemented on the uplink between the mobile agent and the access point and here quantifiable improvements in quality of service and energy efficiency are observed. The hybrid paradigm is extensively tested experimentally on a fully compliant 802.15.4 testbed, where mobility is considered in the problem formulation using a team of fully autonomous robots.

关 键 词:Wireless sensor network Power control LOCALIZATION 

分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置] TN929.5[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象