检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:PENG Yiqing LI Fan TAN Hui YI Songlin
机构地区:[1]College of Materials Science and Technology,Beijing Forestry University,Beijing 100083,P.R.China [2]Xishuangbanna Comprehensive Technical Inspection Center,Jinghong 666100,Yunnan,P.R.China
出 处:《Chinese Forestry Science and Technology》2011年第Z1期19-25,共7页中国林业科技(英文版)
基 金:supported by National Natural Science Foundation of China - The Key Theory Study on Vacuum-superheated Vapor Wood Drying (30871978)
摘 要:In this work, Chinese fir samples with a size of 400 mm (L) by 50 mm (W) 30 mm (H) weretaken as specimens, and drying rate and energy consumption were compared under the conditions, inwhich the absolute pressure was 0.02 , 0.04 , 0.06 and 0.10 MPa, respectively, and the temperature was80 oC. The results showed that, when the moisture content (MC) of the samples was above fibersaturation point (FSP), the vacuum drying rate was 0.96-1.24 times as high as the ambient pressuredrying rate. However, when it was below FSP, the vacuum drying rate was 1.26-1.32 times as high as theambient pressure drying rate. At the same time, when the MC was above FSP, the energy consumptionof vacuum drying was 81.1%-95.9% of that of ambient pressure drying; when the MC was below FSP,the energy consumption of vacuum drying was 62.40%-69.40% of that of ambient pressure drying.Therefore, the vacuum drying was superior to the ambient pressure drying in terms of drying rate andenergy consumption.In this work, Chinese fir samples with a size of 400 mm (L) by 50 mm (W) 30 mm (H) weretaken as specimens, and drying rate and energy consumption were compared under the conditions, inwhich the absolute pressure was 0.02 , 0.04 , 0.06 and 0.10 MPa, respectively, and the temperature was80 oC. The results showed that, when the moisture content (MC) of the samples was above fibersaturation point (FSP), the vacuum drying rate was 0.96-1.24 times as high as the ambient pressuredrying rate. However, when it was below FSP, the vacuum drying rate was 1.26-1.32 times as high as theambient pressure drying rate. At the same time, when the MC was above FSP, the energy consumptionof vacuum drying was 81.1%-95.9% of that of ambient pressure drying; when the MC was below FSP,the energy consumption of vacuum drying was 62.40%-69.40% of that of ambient pressure drying.Therefore, the vacuum drying was superior to the ambient pressure drying in terms of drying rate andenergy consumption.
关 键 词:Chinese fir(Cunninghamia lanceolata) vacuum drying ambient drying drying rate
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28