自然场景下低分辨率苹果果实病害智能识别方法  被引量:2

The Intelligent Identification Methods of Apple Fruit's Disease in Nature Outdoors Based on Low-resolution Image

在线阅读下载全文

作  者:尹秀珍[1] 何东健[2] 霍迎秋[1] 

机构地区:[1]西北农林科技大学信息工程学院,陕西杨凌712100 [2]西北农林科技大学机械与电子工程学院,陕西杨凌712100

出  处:《农机化研究》2012年第10期29-32,共4页Journal of Agricultural Mechanization Research

基  金:科技部财政部科技推广专项资金项目(Z222021002);西北农林科技大学重点项目(A213020901);国家自然科学基金项目(60975007)

摘  要:为实现自然场景下低分辨率苹果果实病害的智能识别,对获取图像进行预处理,采用改进的水平集交互式分割方法提取病斑。根据病斑特点,提取H,S,V等3个通道的2个低阶颜色矩作为颜色特征,基于灰度共生矩阵提取8个特征参数作为纹理特征,提取病斑的Hu不变矩作为形状特征。在对特征进行优选的基础上,构建支持向量机病害识别模型。实验结果表明,用优选的15个特征和支持向量机识别模型,对3种病害的平均正确识别率达到90%,可以有效识别苹果果实病害。To realize intelligently identification of the apple fruit's disease in nature outdoors based on low-resolution image,after pre-processing,the diseased parts were extracted using improved level set interactive segmentation method.According to the characteristic of the disease spots,two low color moments of H,S and V channels were extracted as color characteristic,the co-occurrence matrix was used to extract eight texture characteristics and seven Hu invariant moments as shape feature.After choosed the preferred characteristics,the disease identification model is constructed based on the support vector machine classifier.Experiments show that the optimal 15 features and the support vector machine model have the average correct identification rate arrived 90% for the 3 kinds of diseases,which can effectively identify the apple diseases.

关 键 词:苹果病害 水平集 特征提取 图像识别 支持向量机 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象