检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东师范大学数学系,上海200062 [2]乔治亚州立大学数理统计系 [3]南通大学理学院计算科学与统计学系,江苏南通226019
出 处:《昆明理工大学学报(自然科学版)》2012年第2期83-87,共5页Journal of Kunming University of Science and Technology(Natural Science)
基 金:Supported by the National Natural Science Foundation of China(Granted No.10271048,10671073);Supported by Science and Technology Commission of Shanghai Municipality(Granted No.07XD14011
摘 要:Ringel提出寻找一个图可以三角剖分给定可定向曲面的充分必要条件.针对这一问题,Mo-har和Thomassen在他们的专著《曲面上的嵌入图》中进一步提出下列公开问题:是否存在常数c:0<c<1,使得每一个n阶简单图G,如果它的每一个节点的度数至少是cn,而且它的边数可以被3整除,那么G就可以三角剖分一个可定向曲面?本文证明了这样的常数是不存在的,即对于任意常数c:0<c<1,有无限多个反例,它们的最小度大于等于cn,同时边数是3的倍数,却不可能三角剖分任何一个可定向曲面.另外,我们研究了完全二部图Kn,n的Hamilton嵌入性质,证明Kn,n在Sg(g=(n-1 2))上至少有((n-1)!)2个Hamilton嵌入.这个结果表明完全三部图Kn,n,n在Sg(g=(n-1 2))上至少有n!((n-1)!)2个不同的三角剖分嵌入(它们是可2-面染色的).G.Ringel posed the problem to find a sufficient and necessary condition for a graph to triangulate an orientable surface.B.Mohar and C.Thomassen raised the following problem: Does there exist a number c:0<c<1,such that every graph with n vertices,whose minimal degree is at least cn and whose number of edges is divisible by 3,which triangulates an orientable surface? Here,in this paper we show that such number c does not exist,that is,for any number c:0<c<1,there are infitely many graphs of order n,with δG)≥cn,and |E(G)|≡0(mod 3) which can't triangulate any orientable surface.Furthermore,we investigate the Hamiltonian embeddings of Kn,n and show that Kn,n has at least((n-1)!)2 distinct embeddings in Sg,(g=n-1 2)),which implies that Kn,n,n has at least n!((n-1)!)2 distinct two-face colorable triangular embeddings in the same surface.
关 键 词:三角剖分嵌入 Hamilton-嵌入 亏格嵌入
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222