Optimization of Pass Schedule in Hot Strip Rolling  被引量:5

Optimization of Pass Schedule in Hot Strip Rolling

在线阅读下载全文

作  者:QI Xiang-dong, WANG Tao, XIAO Hong (National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, Hebei, China) 

出  处:《Journal of Iron and Steel Research International》2012年第8期25-28,共4页

基  金:Item Sponsored by National Natural Science Foundation of China(51075353);Hebei Natural Science Foundation of China(E2010001208)

摘  要:Rolling schedule not only determines the rolling process to be going smoothly, but also affects the shape accuracy and structure properties of finished strip. In order to gain good strip crown and flatness, the calculation formulas of the most suitable rolling force and bending force are deduced. By taking relatively equal load of rolling power and good shape as objective functions, the optimization mathematical models of finish rolling schedule are established. By contrast, the rolling schedules after optimization can improve the rolling mill working status and ensure the strip crown and flatness to be good. At the same time, the setting value of bending force is improved and this leaves more space for on-line shape control.Rolling schedule not only determines the rolling process to be going smoothly, but also affects the shape accuracy and structure properties of finished strip. In order to gain good strip crown and flatness, the calculation formulas of the most suitable rolling force and bending force are deduced. By taking relatively equal load of rolling power and good shape as objective functions, the optimization mathematical models of finish rolling schedule are established. By contrast, the rolling schedules after optimization can improve the rolling mill working status and ensure the strip crown and flatness to be good. At the same time, the setting value of bending force is improved and this leaves more space for on-line shape control.

关 键 词:OPTIMIZATION rolling schedule rolling force bending force SHAPE 

分 类 号:TG335.56[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象