Thermal , Microstructural and Mechanical Coupling Analysis Model for Flatness Change Prediction During Run-Out Table Cooling in Hot Strip Rolling  被引量:3

Thermal , Microstructural and Mechanical Coupling Analysis Model for Flatness Change Prediction During Run-Out Table Cooling in Hot Strip Rolling

在线阅读下载全文

作  者:WANG Xiao-dong 1 , 2 , LI Fei 1 , JIANG Zheng-yi 2 ( 1.Shougang Research Institute of Technology , Shougang Group , Beijing 100043 , China  2.Faculty of Engineering , University of Wollongong , Wollongong NSW 2522 , Australia ) 

出  处:《Journal of Iron and Steel Research International》2012年第9期43-51,共9页

摘  要:Non-uniformity of temperature distribution across strip width direction is the ultimate reason why the flatness defect occurs on the strip after cooling process although the strip is flat at the exit of finishing mill.One thermal , microstructural and mechanical coupling analysis model for predicting flatness change of steel strip during the run-out table cooling process was established using ABAQUS finite element software.K Esaka phase transformation kinetics model was employed to calculate the phase transformation , and coupled with temperature calculation using the user subroutine program HETVAL.Elasto-plasticity constitutive equations of steel material , in which conventional elastic and plastic strains , thermal strain , phase transformation strain and transformation induced plastic strain were considered , were derived and programmed in the user subroutine program UMAT.The conclusion that flatness of steel strip will develop to edge wave defect under the functions of the differential thermal and microstructural behaviors across strip width during the run-out table cooling procedure was acquired through the analysis results of this model.Calculation results of this analysis model agree well with the actual measurements and observation.Non-uniformity of temperature distribution across strip width direction is the ultimate reason why the flatness defect occurs on the strip after cooling process although the strip is flat at the exit of finishing mill.One thermal , microstructural and mechanical coupling analysis model for predicting flatness change of steel strip during the run-out table cooling process was established using ABAQUS finite element software.K Esaka phase transformation kinetics model was employed to calculate the phase transformation , and coupled with temperature calculation using the user subroutine program HETVAL.Elasto-plasticity constitutive equations of steel material , in which conventional elastic and plastic strains , thermal strain , phase transformation strain and transformation induced plastic strain were considered , were derived and programmed in the user subroutine program UMAT.The conclusion that flatness of steel strip will develop to edge wave defect under the functions of the differential thermal and microstructural behaviors across strip width during the run-out table cooling procedure was acquired through the analysis results of this model.Calculation results of this analysis model agree well with the actual measurements and observation.

关 键 词:hot rolled strip internal stress phase transformation run-out table cooling FLATNESS 

分 类 号:TG335.5[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象