Influence of Rotational Speed on Microstructure and Mechanical Properties of Dissimilar Metal AISI 304-AISI 4140 Continuous Drive Friction Welds  被引量:2

Influence of Rotational Speed on Microstructure and Mechanical Properties of Dissimilar Metal AISI 304-AISI 4140 Continuous Drive Friction Welds

在线阅读下载全文

作  者:G Subhash Chander G Madhusudhan Reddy A Venugopal Rao 

机构地区:[1]Swarna Bharathi Institute of Science and Technology,Khammam 507002,AP,India [2]Defense Metallurgical Research Laboratory,Kanchanbagh 500058,AP,India

出  处:《Journal of Iron and Steel Research International》2012年第10期64-73,共10页

摘  要:Fundamental investigation of continuous drive friction welding of austenitic stainless steel (AISI 304) and low alloy steel (AISI 4140) is described. The emphasis is made on the influence of rotational speed on the microstructure and mechanical properties such as hardness, tensile strength, notch tensile strength and impact toughness of the dissimilar joints. Hardness profiles across the weld show the interface is harder than the respective parent metals. In general, maximum peak hardness is observed on the stainless steel side, while other peak hardness is on the low alloy steel side. A trough in hardness distribution in between the peaks is located on the low alloy steel side. Peak hardness on the stainless steel and low alloy steel side close to the interface increases with a decrease in rotational speed. All transverse tensile joints fractured on stainless steel side near the interface. Notch tensile strength and impact toughness increase with increase in rotational speed up to 1 500 r/min and decrease thereafter. The mechanism of influence of rotational speed for the observed trends is discussed in the torque, displacement characteristics, heat generation, microstructure, fractography and mechanical properties.Fundamental investigation of continuous drive friction welding of austenitic stainless steel (AISI 304) and low alloy steel (AISI 4140) is described. The emphasis is made on the influence of rotational speed on the microstructure and mechanical properties such as hardness, tensile strength, notch tensile strength and impact toughness of the dissimilar joints. Hardness profiles across the weld show the interface is harder than the respective parent metals. In general, maximum peak hardness is observed on the stainless steel side, while other peak hardness is on the low alloy steel side. A trough in hardness distribution in between the peaks is located on the low alloy steel side. Peak hardness on the stainless steel and low alloy steel side close to the interface increases with a decrease in rotational speed. All transverse tensile joints fractured on stainless steel side near the interface. Notch tensile strength and impact toughness increase with increase in rotational speed up to 1 500 r/min and decrease thereafter. The mechanism of influence of rotational speed for the observed trends is discussed in the torque, displacement characteristics, heat generation, microstructure, fractography and mechanical properties.

关 键 词:friction welding dissimilar metal joint austenitic stainless steel low alloy steel MICROSTRUCTURE impact toughness tensile strength 

分 类 号:TG453.9[金属学及工艺—焊接]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象