Inhibition of 5-HT_3 Receptors-activated Currents by Cannabinoids in Rat Trigeminal Ganglion Neurons  

Inhibition of 5-HT_3 Receptors-activated Currents by Cannabinoids in Rat Trigeminal Ganglion Neurons

在线阅读下载全文

作  者:石波 杨蓉 王晓慧 刘海霞 邹丽 胡晓群 吴建萍 邹安若 刘玲华 

机构地区:[1]HuBei College of Traditional Chinese Medicine [2]DL Naturegene Life Sciences

出  处:《Journal of Huazhong University of Science and Technology(Medical Sciences)》2012年第2期265-271,共7页华中科技大学学报(医学英德文版)

基  金:supported by National Natural Science Foundation of China(No.30271500);Science and Tech-nology Research Project Fund from the Department of Edu-cation of Hubei Province of China(No.B20115101)

摘  要:This study investigated the modulatory effect of synthetic cannabinoids WIN55,212-2 on 5-HT3 receptor-activated currents (I5-HT3) in cultured rat trigeminal ganglion (TG) neurons using whole-cell patch clamp technique. The results showed that: (1) The majority of examined neurons (78.70%) were sensitive to 5-HT (3–300 μmol/L). 5-HT induced inward currents in a concentration-dependent manner and the currents were blocked by ICS 205-930 (1 μmol/L), a selective antagonist of the 5-HT3 receptor; (2) Pre-application of WIN55,212-2 (0.01–1 μmol/L) significantly inhibited I5-HT3 reversibly in concentration-dependent and voltage-independent manners. The concentra-tion-response curve of 5-HT3 receptor was shifted downward by WIN55,212-2 without any change of the threshold value. The EC50 values of two curves were very close (17.5±4.5) mmol/L vs. (15.2±4.5) mmol/L and WIN55,212-2 decreased the maximal amplitude of I5-HT3 by (48.65±4.15)%; (3) Neither AM281, a selective CB1 receptor antagonist, nor AM630, a selective CB2 receptor antagonist reversed the inhibition of I5-HT3 by WIN55,212-2; (4) When WIN55,212-2 was given from 15 to 120 s before 5-HT application, inhibitory effect was gradually increased and the maximal inhibition took place at 90 s, and the inhibition remained at the same level after 90 s. We are led to concluded that-WIN55,212-2 inhibited I5-HT3 significantly and neither CB1 receptor antagonist nor CB2 receptor antagonist could reverse the inhibition of I5-HT3 by WIN55,212-2. Moreover, WIN55,212-2 is not an open channel blocker (OCB) of 5-HT3 receptor. WIN55,212-2 significantly inhibited 5-HT-activated currents in a non-competitive manner. The inhibition of I5-HT3 by WIN55,212-2 is probably new one of peripheral analgesic mechanisms of WIN55,212-2, but the mechanism by which WIN55,212-2 inhibits I5-HT3 warrants further investigation.This study investigated the modulatory effect of synthetic cannabinoids WIN55,212-2 on 5-HT3 receptor-activated currents (I5-HT3) in cultured rat trigeminal ganglion (TG) neurons using whole-cell patch clamp technique. The results showed that: (1) The majority of examined neurons (78.70%) were sensitive to 5-HT (3–300 μmol/L). 5-HT induced inward currents in a concentration-dependent manner and the currents were blocked by ICS 205-930 (1 μmol/L), a selective antagonist of the 5-HT3 receptor; (2) Pre-application of WIN55,212-2 (0.01–1 μmol/L) significantly inhibited I5-HT3 reversibly in concentration-dependent and voltage-independent manners. The concentra-tion-response curve of 5-HT3 receptor was shifted downward by WIN55,212-2 without any change of the threshold value. The EC50 values of two curves were very close (17.5±4.5) mmol/L vs. (15.2±4.5) mmol/L and WIN55,212-2 decreased the maximal amplitude of I5-HT3 by (48.65±4.15)%; (3) Neither AM281, a selective CB1 receptor antagonist, nor AM630, a selective CB2 receptor antagonist reversed the inhibition of I5-HT3 by WIN55,212-2; (4) When WIN55,212-2 was given from 15 to 120 s before 5-HT application, inhibitory effect was gradually increased and the maximal inhibition took place at 90 s, and the inhibition remained at the same level after 90 s. We are led to concluded that-WIN55,212-2 inhibited I5-HT3 significantly and neither CB1 receptor antagonist nor CB2 receptor antagonist could reverse the inhibition of I5-HT3 by WIN55,212-2. Moreover, WIN55,212-2 is not an open channel blocker (OCB) of 5-HT3 receptor. WIN55,212-2 significantly inhibited 5-HT-activated currents in a non-competitive manner. The inhibition of I5-HT3 by WIN55,212-2 is probably new one of peripheral analgesic mechanisms of WIN55,212-2, but the mechanism by which WIN55,212-2 inhibits I5-HT3 warrants further investigation.

关 键 词:WIN55 212-2 5-HT3 receptor CB1 receptor CB2 receptor trigeminal ganglion neuron whole-cell patch clamp 

分 类 号:R96[医药卫生—药理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象