检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《建筑钢结构进展》2013年第3期48-53,共6页Progress in Steel Building Structures
基 金:国家自然科学基金(50778086)
摘 要:连续钢梁腹板开洞后,不仅存在强度问题,还存在刚度问题,即变形不能过大。因洞口区域变为三次超静定,要计算其挠度,需先求解多余未知力,这样使得挠度计算极为不便。为了避免求解超静定内力,而又能得到适用的挠度计算公式,分别用求解挠度微分方程和结合用结构力学的方法推导了腹板开洞钢梁的挠度函数解析式,并将这些挠度函数计算的结果分别与有限元计算的结果进行了对比。结果表明两种方法得到的计算公式都与有限元结果吻合较好,可用于实际应用。Cutting holes in the webs of continuous steel beams will give rise not only to strength problems but also stiffness problems which mean the deflection of those beams may be too large to meet the requirements.Since the region with holes is three times statically indeterminate, redundant unknown forces have to be obtained first to calculate the deflection which makes the deflection calculation of perforated beams extremely complicated.In order to avoid this while still get applicable formulas for determining deflection of perforated beams, the authors of this paper derived applicable formulas by directly solving differential equations and solving differential equations combined with displacement method.Results from these formulas are compared with those from finite element method and show a good agreement.The formulas can be put into practical use.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49