检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Key Laboratory of Meteorological Disaster of Ministry of Education,Nanjing University of Information Science & Technology [2]School of Atmospheric Physics,Nanjing University of Information Science & Technology [3]Lightning Protection Centre of Zhejiang Province
出 处:《Journal of Tropical Meteorology》2013年第1期104-108,共5页热带气象学报(英文版)
基 金:China Social Welfare Research Project (GYHY200806014)
摘 要:The LS-SVM(Least squares support vector machine) method is presented to set up a model to forecast the occurrence of thunderstorms in the Nanjing area by combining NCEP FNL Operational Global Analysis data on 1.0°×1.0° grids and cloud-to-ground lightning data observed with a lightning location system in Jiangsu province during 2007-2008.A dataset with 642 samples,including 195 thunderstorm samples and 447 non-thunderstorm samples,are randomly divided into two groups,one(having 386 samples) for modeling and the rest for independent verification.The predictors are atmospheric instability parameters which can be obtained from the NCEP data and the predictand is the occurrence of thunderstorms observed by the lightning location system.Preliminary applications to the independent samples for a 6-hour forecast of thunderstorm events show that the prediction correction rate of this model is 78.26%,false alarm rate is 21.74%,and forecasting technical score is 0.61,all better than those from either linear regression or artificial neural network.The LS-SVM(Least squares support vector machine) method is presented to set up a model to forecast the occurrence of thunderstorms in the Nanjing area by combining NCEP FNL Operational Global Analysis data on 1.0°×1.0° grids and cloud-to-ground lightning data observed with a lightning location system in Jiangsu province during 2007-2008.A dataset with 642 samples,including 195 thunderstorm samples and 447 non-thunderstorm samples,are randomly divided into two groups,one(having 386 samples) for modeling and the rest for independent verification.The predictors are atmospheric instability parameters which can be obtained from the NCEP data and the predictand is the occurrence of thunderstorms observed by the lightning location system.Preliminary applications to the independent samples for a 6-hour forecast of thunderstorm events show that the prediction correction rate of this model is 78.26%,false alarm rate is 21.74%,and forecasting technical score is 0.61,all better than those from either linear regression or artificial neural network.
关 键 词:THUNDERSTORM FORECAST LS-SVM NANJING area cloud-to-ground LIGHTNING NCEP
分 类 号:P457.9[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222