检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚从军[1,2]
机构地区:[1]湖南科技学院思政部,湖南永州425199 [2]中国社会科学院哲学所,北京100732
出 处:《湖南科技大学学报(社会科学版)》2014年第1期33-40,共8页Journal of Hunan University of Science and Technology(Social Science Edition)
基 金:国家社科基金项目(12BZX060)
摘 要:正则互模拟是非良基公理和非良基集合论形成的基础,基于正则互模拟形成了一簇非良基公理。定义了三种正则互模拟≌*、≌t和≡V0,由它们生成的非良基公理AFA≌*、AFA≌t和AFA≡V0与经典的非良基公理FAFA、SAFA和AFA分别等价;非良基公理FAFA和AFA位于非良基公理簇的两端,SAFA处于FAFA和AFA之间;非良基公理FAFA、SAFA和AFA两两不相容;与非良基公理FAFA、SAFA、AFA相对应的外延力依次增强,而相对应的非良基集合论的域依次缩小。Regular bisimulation is the foundation of the non- well- founded axioms and the non- well-founded set theories,and a family of non- well- founded axioms are based on it. This paper defines the regular bisimulations≌*,≌t and ≡ V0,shows the non- well- founded axioms AFA≌*,AFA≌tand AFA≡V0crrosponding to them are respectively equal to the non- well- founded axioms FAFA,SAFA and AFA; FAFA and AFA are at both ends of the family of non- well- founded,SAFA between them,and FAFA,SAFA and AFA are pairwise incompatible; The extensionalities of FAFA,SAFA and AFA increase incrementally,and their ranges decrease successively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249