基于机器学习的SSH应用分类研究  被引量:2

Classification of SSH Applications Based on Machine Learning

在线阅读下载全文

作  者:孟姣[1,2] 王丽宏[3] 熊刚[1,2,4] 姚垚[1,2] 

机构地区:[1]中国科学院计算技术研究所,北京100190 [2]中国科学院大学,北京100049 [3]国家计算机网络应急技术处理协调中心,北京100029 [4]中国科学院信息工程研究所,北京100093

出  处:《计算机研究与发展》2012年第S2期153-159,共7页Journal of Computer Research and Development

基  金:国家"八六三"高技术研究发展计划基金项目(2011AA010703);国家自然科学基金项目(61070184);中国科学院战略性先导科技专项基金项目(XDA06030200)

摘  要:SSH作为一种加密通讯协议,不仅为远程登录等服务提供了安全保障,其隧道应用还可以封装一些其他未知应用,对网络安全产生了一定的潜在影响,因此需要准确识别出这些应用,并及时采取相应措施,维护网络安全.由于SSH协议的加密特性,通常采用基于流量统计特征的方法对其进行识别,且多是采用有监督的机器学习方法.通过对无监督机器学习方法与有监督机器学习方法的对比,比较了C4.5,SVM,BayesNet,K-means,EM这5种机器学习方法对SSH应用的分类效果,证实了通过机器学习方法来识别SSH应用是可行的.实验结果显示无监督的K-means方法具有最好的分类效果,对SSH隧道中的HTTP应用的识别准确率最高,达到了99%以上.SSH作为一种加密通讯协议,不仅为远程登录等服务提供了安全保障,其隧道应用还可以封装一些其他未知应用,对网络安全产生了一定的潜在影响,因此需要准确识别出这些应用,并及时采取相应措施,维护网络安全.由于SSH协议的加密特性,通常采用基于流量统计特征的方法对其进行识别,且多是采用有监督的机器学习方法.通过对无监督机器学习方法与有监督机器学习方法的对比,比较了C4.5,SVM,BayesNet,K-means,EM这5种机器学习方法对SSH应用的分类效果,证实了通过机器学习方法来识别SSH应用是可行的.实验结果显示无监督的K-means方法具有最好的分类效果,对SSH隧道中的HTTP应用的识别准确率最高,达到了99%以上.

关 键 词:SSH隧道 流量统计特征 机器学习 流量分类 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象