Composite silicone rubber of high piezoresistance repeatability filled with nanoparticles  被引量:1

Composite silicone rubber of high piezoresistance repeatability filled with nanoparticles

在线阅读下载全文

作  者:WU JuYing ZHOU ChengXi ZHU QingWen LI EnRong DAI Ge BA Long HUANG YuHong Mei Jun 

机构地区:[1]Institute of Structural Mechanics,China Academy of Engineering Physics,Mianyan 621900,China [2]State Key Laboratory of Bioelectronics,Department of Biomedical Engineering and Department of Physics,Southeast University,Nanjing 210098,China [3]Department of Material Science and Engineering,Southeast University,Nanjing 210096,China

出  处:《Science China(Technological Sciences)》2009年第12期3497-3503,共7页中国科学(技术科学英文版)

基  金:Supported by the National Natural Science Foundation of China(Grant No.10576008)

摘  要:The ruthenium oxide nanoparticles with size less than 20 nm were fabricated by annealing the metallic ruthenium nanoparticles in air,which were synthesized by using the thermal reduction in the polyol solution.The rutile structure of the ruthenium oxide was proved by using transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS).The oxide has good electron conductivity. The surface of the ruthenium oxide was modified by a vinyl silane coupling agent.The assembling of the silane to the oxide surface was proved by Infrared(IR)absorption spectroscopy.By mixing the nanoparticles with poly(methylvinylsiloxane)(PMVS)silicone rubber,a composite filled with dispersive conducting phase was fabricated.The temperature dependent conductivity shows that the electron transportation through composite is mainly dominated by tunneling.The measurement of piezoresistance shows that the composite at low strain has high piezoresistance repeatability.The 3D reconstruction images of the composite filled with carbon black or ruthenium oxide show that the aggregation of the nanoparticles differs much for two composites.The narrow distribution range of the particle size was thought to be the main factor for the high piezoresistance recurrence.The ruthenium oxide nanoparticles with size less than 20 nm were fabricated by annealing the metallic ruthenium nanoparticles in air, which were synthesized by using the thermal reduction in the polyol solution. The rutile structure of the ruthenium oxide was proved by using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The oxide has good electron conductivity. The surface of the ruthenium oxide was modified by a vinyl silane coupling agent. The assembling of the silane to the oxide surface was proved by Infrared (IR) absorption spectroscopy. By mixing the nanoparticles with poly(methylvinylsiloxane) (PMVS) silicone rubber, a composite filled with dispersive conducting phase was fabricated. The temperature dependent conductivity shows that the electron transportation through composite is mainly dominated by tunneling. The measurement of piezoresistance shows that the composite at low strain has high piezoresistance repeatability. The 3D reconstruction images of the composite filled with carbon black or ruthenium oxide show that the aggregation of the nanoparticles differs much for two composites. The narrow distribution range of the particle size was thought to be the main factor for the high piezoresistance recurrence.

关 键 词:CONDUCTING rubber PIEZORESISTANCE NANOPARTICLE RUTHENIUM oxide transmission electron microscopy 

分 类 号:TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象