检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHAO YuXin YI ShiHe TIAN LiFeng CHENG ZhongYu
出 处:《Science China(Technological Sciences)》2009年第12期3640-3648,共9页中国科学(技术科学英文版)
基 金:Supported by the National Natural Science Foundation of China(Grant No.10672178)
摘 要:Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.Due to influence of compressibility, shock wave, instabilities, and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio (SNR) measurements. Therefore, nanoparticle based planar laser scattering method (NPLS) is developed here. The nanoparticles are used as tracer, and pulse planar laser is used as light source in NPLS; by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized. The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave. The laser scattering characteristics of nanoparticles are analyzed with light scattering theory. The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS, with which the flow field involving shock wave, expansion, Mach disk, boundary layer, sliding-line, and mixing layer can be imaged clearly at high spatiotemporal resolution.
关 键 词:NANOPARTICLE SUPERSONIC flow imaging SPATIOTEMPORAL RESOLUTION SIGNAL-TO-NOISE RATIO
分 类 号:TB383.1[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173