检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨寸月[1] 朱敏[1] 何小玲[2] 易宗锐[1]
机构地区:[1]四川大学计算机学院,四川成都610064 [2]喀什师范学院物理系,新疆喀什844000
出 处:《四川大学学报(工程科学版)》2012年第S1期150-155,共6页Journal of Sichuan University (Engineering Science Edition)
摘 要:组织病理图像中阳性细胞比例的检测对癌症和肿瘤的定性和定级起决定作用。提出一种用于细胞准确计数的新的轮廓检测方法,针对组织病理图像色彩纹理复杂、细胞边界模糊等特点,结合通道提取和图像二值化方法实现阳性细胞的准确分离,并在CV模型基础上完成对细胞的轮廓提取。实验表明,该方法有效解决了传统方法无法处理的弱边缘问题,在保持算法性能的前提下,可自动分离组织病理图像中的阳性细胞并检测其轮廓。组织病理图像中阳性细胞比例的检测对癌症和肿瘤的定性和定级起决定作用。提出一种用于细胞准确计数的新的轮廓检测方法,针对组织病理图像色彩纹理复杂、细胞边界模糊等特点,结合通道提取和图像二值化方法实现阳性细胞的准确分离,并在CV模型基础上完成对细胞的轮廓提取。实验表明,该方法有效解决了传统方法无法处理的弱边缘问题,在保持算法性能的前提下,可自动分离组织病理图像中的阳性细胞并检测其轮廓。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117