检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京工业大学数学系,江苏南京210009 [2]东南大学数学系,江苏南京210018
出 处:《公路交通科技(应用技术版)》2009年第8期207-210,共4页
摘 要:根据交通流量、速度和占有率,构造不同交通流状态的隶属函数,根据最大隶属度原则进行交通流状态的识别;利用支持向量机的全局优化、适应性强、泛化性能好等优点,针对实时交通流数据的随机性、高维、非线性和时变等特性,将模糊支持向量机(FSVM)应用于高速公路交通事件检测问题中。在识别阶段利用60组实测数据训练模糊支持向量机,利用60组实测数据进行测试,测试结果表明,利用FSVM进行交通事件检测,识别率达到96.7%,从而验证本文的方法是切实可行的。
关 键 词:模糊模式识别 模糊支持向量机 交通事件自动检测 隶属函数
分 类 号:U491.116[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28