The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes  被引量:4

The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes

在线阅读下载全文

作  者:WANG MengDong DENG ChunYan NIE Zhou XU XiaHong YAO ShouZhuo 

机构地区:[1]State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical Engineering,Hunan University,Changsha 410082,China

出  处:《Science China Chemistry》2009年第11期1991-1998,2033-2034,共10页中国科学(化学英文版)

基  金:Supported by the National Natural Science Foundation of China (Grant No. 20805013);the National Basic Research Program of China (Grant No. 2009CB421601)

摘  要:Amino acid ionic liquids(AAILs) have attracted much attention due to their special chemical and physical properties,especially their outstanding biocompatibility and truly green aspect.In this work,a novel electrochemical biosensing platform based on AAILs/carbon nanotubes(CNTs) composite was fabricated.AAILs were used as a novel solvent for glucose oxidase(GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes(CNTs) modified glassy carbon(GC) electrode into AAILs containing GOD.The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry.The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen.Due to the synergic effect of AAILs and CNTs,the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM(S/N = 3).Furthermore,the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid.Therefore,AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third-generation enzyme sensors.Amino acid ionic liquids (AAILs) have attracted much attention due to their special chemical and physical properties, especially their outstanding biocompatibility and truly green aspect. In this work, a novel electrochemical biosensing platform based on AAILs/carbon nanotubes (CNTs) composite was fabricated. AAILs were used as a novel solvent for glucose oxidase (GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes (CNTs) modified glassy carbon (GC) electrode into AAILs containing GOD. The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry. The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen. Due to the synergic effect of AAILs and CNTs, the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM (S/N = 3). Furthermore, the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid. Therefore, AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third- generation enzyme sensors.

关 键 词:AMINO acid ionic liquids(AAILs) carbon nanotubes(CNTs) GLUCOSE oxidase(GOD) direct ELECTROCHEMISTRY GLUCOSE sensor 

分 类 号:O611.3[理学—无机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象