L-harmonic functions with polynomial growth of a fixed rate  

L-harmonic functions with polynomial growth of a fixed rate

在线阅读下载全文

作  者:ZHOU ChaoHui CHEN ZhiHua 

机构地区:[1]Department of Mathematics,Tongji University,Shanghai 200092,China

出  处:《Science China Mathematics》2009年第12期2855-2862,共8页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.10571135)

摘  要:Yau made the following conjecture:For a complete noncompact manifold with nonnegative Ricci curvature the space of harmonic functions with polynomial growth of a fixed rate is finite dimensional.we extend the result on the Laplace operator to that on the symmetric diffusion operator,and prove the space of L-harmonic functions with polynomial growth of a fixed rate is finitedimensional,when m-dimensional Bakery-Emery Ricci curvature of the symmetric diffusion operator on the complete noncompact Riemannian manifold is nonnegative.Yau made the following conjecture: For a complete noncompact manifold with nonnegative Ricci curvature the space of harmonic functions with polynomial growth of a fixed rate is finite dimensional. we extend the result on the Laplace operator to that on the symmetric diffusion operator, and prove the space of L-harmonic functions with polynomial growth of a fixed rate is finite-dimensional, when m-dimensional Bakery-Emery Ricci curvature of the symmetric diffusion operator on the complete noncompact Riemannian manifold is nonnegative.

关 键 词:L-harmonic function symmetric diffusion operator Bakery-Emery Ricci curvature 53C40 

分 类 号:O174.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象