检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:DING Yang Department of Mathematics, Southeast University, Nanjing 210096, China
出 处:《Science China Mathematics》2009年第4期631-638,共8页中国科学:数学(英文版)
基 金:supported by the China Scholarship Council, National Natural Science Foundation of China(Grant No.10571026);the Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China;the Specialized Research Fund for the Doctoral Program of Higher Education (GrantNo. 20060286006)
摘 要:We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the in-formation rate R = 1/2, by our constructive lower bound, the relative minimum distance δ≈ 0.0595 (for GV bound, δ≈ 0.110). Moreover, we have proved that the binary self-orthogonal codes asymptotically achieve the Gilbert-Varshamov bound.We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the information rate R = 1/2, by our constructive lower bound, the relative minimum distance δ ≈ 0.0595 (for GV bound, δ ≈ 0.110). Moreover, we have proved that the binary self-orthogonal codes asymptotically achieve the Gilbert-Varshamov bound.
关 键 词:algebraic geometry codes concatenated codes Gilbert-Varshamov bound Reed-Muller codes self-dual basis self-orthogonal codes 11T71
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.153.31