The minimal sublinear expectations and their related properties  被引量:5

The minimal sublinear expectations and their related properties

在线阅读下载全文

作  者:JIA GuangYan School of Mathematics, Shandong University, Jinan 250100, China 

出  处:《Science China Mathematics》2009年第4期785-793,共9页中国科学:数学(英文版)

基  金:supported by National Basic Research Program of China (973 Program) (Grant No.2007CB814901) (Financial Risk);National Natural Science Foundation of China (Grant No. 10671111)

摘  要:In this paper, we prove that for a sublinear expectation ?[·] defined on L 2(Ω, $ \mathcal{F} $ ), the following statements are equivalent: ? is a minimal member of the set of all sublinear expectations defined on L 2(Ω, $ \mathcal{F} $ )? is linearthe two-dimensional Jensen’s inequality for ? holds.Furthermore, we prove a sandwich theorem for subadditive expectation and superadditive expectation.In this paper, we prove that for a sublinear expectation E[·] defined on L2(Ω, F, P ), the following statements are equivalent: (i) E is a minimal member of the set of all sublinear expectations defined on L2(Ω, F, P ); (ii) E is linear; (iii) the two-dimensional Jensen's inequality for E holds. Furthermore, we prove a sandwich theorem for subadditive expectation and superadditive expectation.

关 键 词:G-EXPECTATION Jensen’s inequality linear expectation subadditive expectation sublinear expectation 60H10 

分 类 号:O211.67[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象