检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:JIA GuangYan School of Mathematics, Shandong University, Jinan 250100, China
出 处:《Science China Mathematics》2009年第4期785-793,共9页中国科学:数学(英文版)
基 金:supported by National Basic Research Program of China (973 Program) (Grant No.2007CB814901) (Financial Risk);National Natural Science Foundation of China (Grant No. 10671111)
摘 要:In this paper, we prove that for a sublinear expectation ?[·] defined on L 2(Ω, $ \mathcal{F} $ ), the following statements are equivalent: ? is a minimal member of the set of all sublinear expectations defined on L 2(Ω, $ \mathcal{F} $ )? is linearthe two-dimensional Jensen’s inequality for ? holds.Furthermore, we prove a sandwich theorem for subadditive expectation and superadditive expectation.In this paper, we prove that for a sublinear expectation E[·] defined on L2(Ω, F, P ), the following statements are equivalent: (i) E is a minimal member of the set of all sublinear expectations defined on L2(Ω, F, P ); (ii) E is linear; (iii) the two-dimensional Jensen's inequality for E holds. Furthermore, we prove a sandwich theorem for subadditive expectation and superadditive expectation.
关 键 词:G-EXPECTATION Jensen’s inequality linear expectation subadditive expectation sublinear expectation 60H10
分 类 号:O211.67[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.32