The algebraic structure of discrete zero curvature equations associated with integrable couplings and application to enlarged Volterra systems  被引量:1

The algebraic structure of discrete zero curvature equations associated with integrable couplings and application to enlarged Volterra systems

在线阅读下载全文

作  者:LUO Lin FAN EnGui 

机构地区:[1]Department of Mathematics,Shanghai Second Polytechnic University,Shanghai 201209,China [2]School of Mathematical Sciences,Fudan University,Shanghai 200433,China [3]Department of Mathematics,Xiaogan University,Xiaogan 432100,China

出  处:《Science China Mathematics》2009年第1期147-159,共13页中国科学:数学(英文版)

基  金:supported by the National Key Basic Research Project of China (Grant No. 2004CB318000);the Research Foundation of Hubei Provincial Department of Education (Grant No. D20082602)

摘  要:An algebraic structure of discrete zero curvature equations is established for integrable coupling systems associated with semi-direct sums of Lie algebras. As an application example of this algebraic structure, a τ-symmetry algebra for the Volterra lattice integrable couplings is engendered from this theory.An algebraic structure of discrete zero curvature equations is established for integrable coupling systems associated with semi-direct sums of Lie algebras. As an application example of this algebraic structure, a τ-symmetry algebra for the Volterra lattice integrable couplings is engendered from this theory.

关 键 词:discrete zero curvature equation integrable couplings τ-symmetry algebra 35Q51 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象