Synthesis and characterization of yttrium and antimony codoped SnO_2 conductive nanoparticles  被引量:2

Synthesis and characterization of yttrium and antimony codoped SnO_2 conductive nanoparticles

在线阅读下载全文

作  者:刘小珍 李勇 宋玲玲 肖含章 

机构地区:[1]School of Chemical and Environmental Engineering,Shanghai Institute of Technology [2]Gannan Normal University

出  处:《Journal of Rare Earths》2010年第S1期102-105,共4页稀土学报(英文版)

基  金:Project supported by the National Natural Science Foundation of China (50972094);Leading Academic Discipline Project of Shanghai Municipal Education Commission (J51503);Science Technology Foundation of Shanghai (072305113,10410703000);the Program for Professor of Spe-cial Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning

摘  要:Y was used as a dopant in preparing conductive powder to improve its performance. Y and Sb co-doped SnO2 conductive nanoparticles were prepared by the complexation-coprecipitation method with Sn,Sb2O3 and Y2O3 as the raw materials. Crystal phase,thermal behavior and structure of the prepared conductive nanoparticles were characterized by X-ray diffraction(XRD) ,thermal analysis(TG-DSC) ,Fourier transform infrared(FTIR) and transmission electron microscopy(TEM) techniques,respectively. The Y and Sb co-doped SnO2 conductive nanoparticles with a structure of tetragonal rutile had intense absorption in 4000-2500 cm-1,and the diameter ranged from 10 to 30 nm. The resistivity of Y and Sb co-doped SnO2 conductive nanoparticles was as low as 0.09 Ω·cm which was 4.6 times lower than that of Sb doped SnO2 conductive nanoparticles.Y was used as a dopant in preparing conductive powder to improve its performance. Y and Sb co-doped SnO2 conductive nanoparticles were prepared by the complexation-coprecipitation method with Sn,Sb2O3 and Y2O3 as the raw materials. Crystal phase,thermal behavior and structure of the prepared conductive nanoparticles were characterized by X-ray diffraction(XRD) ,thermal analysis(TG-DSC) ,Fourier transform infrared(FTIR) and transmission electron microscopy(TEM) techniques,respectively. The Y and Sb co-doped SnO2 conductive nanoparticles with a structure of tetragonal rutile had intense absorption in 4000-2500 cm-1,and the diameter ranged from 10 to 30 nm. The resistivity of Y and Sb co-doped SnO2 conductive nanoparticles was as low as 0.09 Ω·cm which was 4.6 times lower than that of Sb doped SnO2 conductive nanoparticles.

关 键 词:conductive nanoparticles DOPING chemical synthesis SPECTRA rare earths 

分 类 号:TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象