Spatial-temporal effects of temperature control device of stoplog intake for JinpingⅠhydropower station  被引量:4

Spatial-temporal effects of temperature control device of stoplog intake for JinpingⅠhydropower station

在线阅读下载全文

作  者:DENG Yun,TUO YouCai ,LI Jia,LI KeFeng & LI Ran State Key Laboratory of Hydraulic & Mountain River Engineering,Sichuan University,Chengdu 610065,China 

出  处:《Science China(Technological Sciences)》2011年第S1期83-88,共6页中国科学(技术科学英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.50679094)

摘  要:This article presents an analysis of the spatial-temporal effect of multi-level stoplog gate intake adopted at Jinping I hydropower station,which is to reduce the adverse impacts on fish breeding caused by cold water discharged from the station in spring and summer.A mathematical model is applied to predict the temperature distribution in reservoir and outflow temperature process of the downstream of Jinping I station with two different types of intake-low level single intake and multi-level stoplog gate intake.For a single station,the latter shows great improvement over the former on temperature distortion(suitable for fish breeding) .In order to evaluate the cumulative effect for different intake types,the analysis is extended to include the next four hydropower stations downstream.The results show that the outflow temperature of stoplog intake is more close to the nature condition comparing with the low level intake for the Jinping I hydropower station.Especially the side effect of cold water in April during temperature raising period can be well improved,but no obvious effect in winter.Jinping I hydropower station has dominated influence on temperature process at lower reach of Yalong River.Influenced by the downstream hydropower station cascade,cold temperature effect in spring and summer seems to be cumulatively enhanced,but the heating effect turns weakened during winter.The analysis suggests the improving effect of stoplog intake can maintain 80%at estuary in April,which clearly shows that stratified intake scheme used in control station can mitigate the cold temperature effect in spring and summer for the whole river basin.This article presents an analysis of the spatial-temporal effect of multi-level stoplog gate intake adopted at Jinping I hydropower station,which is to reduce the adverse impacts on fish breeding caused by cold water discharged from the station in spring and summer.A mathematical model is applied to predict the temperature distribution in reservoir and outflow temperature process of the downstream of Jinping I station with two different types of intake-low level single intake and multi-level stoplog gate intake.For a single station,the latter shows great improvement over the former on temperature distortion(suitable for fish breeding) .In order to evaluate the cumulative effect for different intake types,the analysis is extended to include the next four hydropower stations downstream.The results show that the outflow temperature of stoplog intake is more close to the nature condition comparing with the low level intake for the Jinping I hydropower station.Especially the side effect of cold water in April during temperature raising period can be well improved,but no obvious effect in winter.Jinping I hydropower station has dominated influence on temperature process at lower reach of Yalong River.Influenced by the downstream hydropower station cascade,cold temperature effect in spring and summer seems to be cumulatively enhanced,but the heating effect turns weakened during winter.The analysis suggests the improving effect of stoplog intake can maintain 80%at estuary in April,which clearly shows that stratified intake scheme used in control station can mitigate the cold temperature effect in spring and summer for the whole river basin.

关 键 词:TEMPERATURE STRATIFICATION stoplog gate INTAKE TEMPERATURE control CASCADE power STATIONS mathematical model 

分 类 号:TV12[水利工程—水文学及水资源] TV697.42

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象