机构地区:[1]Vanitec ltd,Winterton House,High Street,Westerham,Kent,TN16 1AQ,UK [2]Metallurgy and Engineering Materials Group,Department of Mechanical Engineering,University of Strathclyde,G1 1XN,UK
出 处:《Journal of Iron and Steel Research International》2011年第S1期393-403,共11页
摘 要:Four Steels,C-Mn-0.05V,C-Mn-0.11V,C-Mn-0.03Nb and C-Mn were subjected to heat treatment to simulate the microstructure of a coarse grained heat affected zone (CGHAZ) and an intercritically reheated coarse grained heat affected zone (ICCGHAZ).This involved reheating to 1350°C,rapid cooling (Δt 8/5 =24s) to room temperature and then reheating to either 750°C or 800°C.The toughness of the HAZs was assessed using both Charpy and CTOD tests.Microstructural features were characterised by optical,scanning` and transmission electron microscopy.Fractographic examinations of the Charpy and CTOD specimens were carried out to understand the micromechanism of fracture under different microstructural and test conditions.The CGHAZ toughness was similar for the steels except that Steel C-Mn-0.05V had a slightly lower ITT compared to the others.The toughness deteriorated in the ICCGHAZ for all the steels,again Steel C-Mn-0.05V had a superior toughness compared to the other three steels in both ICCGHAZ conditions.Raising the level of vanadium to 0.11% caused a decrease in ICCGHAZ toughness.Steel C-Mn-Nb exhibited a greater degradation of impact toughness after the intercritical cycles.The presence of M-A constituents was the dominant factor in determining the toughness of the ICCGHAZs.The size and area fraction of the M-A constituents were the smallest in Steel C-Mn-0.05V.Increasing vanadium level to 0.11% resulted in a greater area fraction of the M-A constituents,larger average and maximum sizes of M-A particles,and significantly more fields containing the M-A.The addition of 0.031% Nb produced the largest M-A particles and the greatest area fraction for the steels tested.Four Steels,C-Mn-0.05V,C-Mn-0.11V,C-Mn-0.03Nb and C-Mn were subjected to heat treatment to simulate the microstructure of a coarse grained heat affected zone (CGHAZ) and an intercritically reheated coarse grained heat affected zone (ICCGHAZ).This involved reheating to 1350°C,rapid cooling (Δt 8/5 =24s) to room temperature and then reheating to either 750°C or 800°C.The toughness of the HAZs was assessed using both Charpy and CTOD tests.Microstructural features were characterised by optical,scanning` and transmission electron microscopy.Fractographic examinations of the Charpy and CTOD specimens were carried out to understand the micromechanism of fracture under different microstructural and test conditions.The CGHAZ toughness was similar for the steels except that Steel C-Mn-0.05V had a slightly lower ITT compared to the others.The toughness deteriorated in the ICCGHAZ for all the steels,again Steel C-Mn-0.05V had a superior toughness compared to the other three steels in both ICCGHAZ conditions.Raising the level of vanadium to 0.11% caused a decrease in ICCGHAZ toughness.Steel C-Mn-Nb exhibited a greater degradation of impact toughness after the intercritical cycles.The presence of M-A constituents was the dominant factor in determining the toughness of the ICCGHAZs.The size and area fraction of the M-A constituents were the smallest in Steel C-Mn-0.05V.Increasing vanadium level to 0.11% resulted in a greater area fraction of the M-A constituents,larger average and maximum sizes of M-A particles,and significantly more fields containing the M-A.The addition of 0.031% Nb produced the largest M-A particles and the greatest area fraction for the steels tested.
关 键 词:vanadium microalloyed steel coarse grained heat affected zone intercritically reheated coarse grained heat affected zone martensite-austenite constitute heat affect zone toughness
分 类 号:TG142.3[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...