一种局部保留C2DPCA人脸特征提取方法  被引量:1

A locality preserving C2DPCA facial feature extraction method

在线阅读下载全文

作  者:刘平[1] 王顺芳[1] 

机构地区:[1]云南大学信息学院,云南昆明650091

出  处:《云南大学学报(自然科学版)》2011年第S2期206-209,214,共5页Journal of Yunnan University(Natural Sciences Edition)

基  金:国家自然科学基金资助项目(10901135);云南省应用基础研究面上项目(2008CD081);云南大学中青年骨干教师培养计划资助;昆明市第九批中青年学术和技术带头人及后备人选资助

摘  要:首先分析了主成分分析(PCA)、二维主成分分析(2DPCA)以及完全二维主成分分析(C2DPCA)存在的不足,针对PCA方法不能解决的小样本问题以及2DPCA和C2DPCA存在对所有识别信息都采用同等对待的不足,提出了局部保留的C2DPCA方法,此方法首先将人脸图像划分为5个区域,并对双眼、嘴唇和轮廓进行保留,其它部分采用降低其散列度的方式进行处理,然后再采用C2DPCA方法进行数据降维和特征提取,经过在ORL人脸数据库上实验研究表明,与C2DPCA相比在进一步降低了特征矩阵的维数的基础上又提高了识别率,并且在识别率方面优于经典的Fisherfaces和ICA方法.首先分析了主成分分析(PCA)、二维主成分分析(2DPCA)以及完全二维主成分分析(C2DPCA)存在的不足,针对PCA方法不能解决的小样本问题以及2DPCA和C2DPCA存在对所有识别信息都采用同等对待的不足,提出了局部保留的C2DPCA方法,此方法首先将人脸图像划分为5个区域,并对双眼、嘴唇和轮廓进行保留,其它部分采用降低其散列度的方式进行处理,然后再采用C2DPCA方法进行数据降维和特征提取,经过在ORL人脸数据库上实验研究表明,与C2DPCA相比在进一步降低了特征矩阵的维数的基础上又提高了识别率,并且在识别率方面优于经典的Fisherfaces和ICA方法.

关 键 词:人脸识别 PCA 2DPCA C2DPCA 

分 类 号:N55[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象