检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《云南大学学报(自然科学版)》2011年第S2期206-209,214,共5页Journal of Yunnan University(Natural Sciences Edition)
基 金:国家自然科学基金资助项目(10901135);云南省应用基础研究面上项目(2008CD081);云南大学中青年骨干教师培养计划资助;昆明市第九批中青年学术和技术带头人及后备人选资助
摘 要:首先分析了主成分分析(PCA)、二维主成分分析(2DPCA)以及完全二维主成分分析(C2DPCA)存在的不足,针对PCA方法不能解决的小样本问题以及2DPCA和C2DPCA存在对所有识别信息都采用同等对待的不足,提出了局部保留的C2DPCA方法,此方法首先将人脸图像划分为5个区域,并对双眼、嘴唇和轮廓进行保留,其它部分采用降低其散列度的方式进行处理,然后再采用C2DPCA方法进行数据降维和特征提取,经过在ORL人脸数据库上实验研究表明,与C2DPCA相比在进一步降低了特征矩阵的维数的基础上又提高了识别率,并且在识别率方面优于经典的Fisherfaces和ICA方法.首先分析了主成分分析(PCA)、二维主成分分析(2DPCA)以及完全二维主成分分析(C2DPCA)存在的不足,针对PCA方法不能解决的小样本问题以及2DPCA和C2DPCA存在对所有识别信息都采用同等对待的不足,提出了局部保留的C2DPCA方法,此方法首先将人脸图像划分为5个区域,并对双眼、嘴唇和轮廓进行保留,其它部分采用降低其散列度的方式进行处理,然后再采用C2DPCA方法进行数据降维和特征提取,经过在ORL人脸数据库上实验研究表明,与C2DPCA相比在进一步降低了特征矩阵的维数的基础上又提高了识别率,并且在识别率方面优于经典的Fisherfaces和ICA方法.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117