基于机器视觉的智能车辆避撞预警算法  被引量:6

Intelligent Vehicle Collision Warning Algorithm Based on Machine Vision

在线阅读下载全文

作  者:彭军 王江锋[2] 王娜[3] 

机构地区:[1]中国新兴建设开发总公司,北京100039 [2]北京交通大学交通运输学院,北京100044 [3]北京大学中国产业发展研究中心,北京100871

出  处:《公路交通科技》2011年第S1期124-128,共5页Journal of Highway and Transportation Research and Development

基  金:"十一五"国家科技支撑项目(2006BAG01A012007BAK35B06);中央高校基本科研业务费专项资金项目(2009JBM055);北京交通大学人才基金项目(2010RC001)

摘  要:由于受到信息采集源性能影响,造成了智能车辆避撞预警系统(Collision Warning System,CWS)前后车相对距离测量精度低的问题,针对此问题提出了一种基于机器视觉的预警算法(Collision Warning Algorithm,CWA),利用机器视觉获得了较高精度的测距信息,有效提高了预警算法的有效性。在分析驾驶员驾驶行为基础上,确定CWA的报警准则。基于机器视觉技术建立了一种多输入、多输出的CWA模型,给出了模型预警原理、决策阈值确定方法、逻辑结构图,以及基于机器视觉的车辆信息获取方法。设计了一个单车道双车辆跟驰实车试验,采集模型测试所需的数据,并利用实测数据对模型进行了验证。试验结果显示,平均测距误差不超过3.6 m,预警模型能够准确给出预警信息,对提高车辆行驶主动安全性具有重要意义。由于受到信息采集源性能影响,造成了智能车辆避撞预警系统(Collision Warning System,CWS)前后车相对距离测量精度低的问题,针对此问题提出了一种基于机器视觉的预警算法(Collision Warning Algorithm,CWA),利用机器视觉获得了较高精度的测距信息,有效提高了预警算法的有效性。在分析驾驶员驾驶行为基础上,确定CWA的报警准则。基于机器视觉技术建立了一种多输入、多输出的CWA模型,给出了模型预警原理、决策阈值确定方法、逻辑结构图,以及基于机器视觉的车辆信息获取方法。设计了一个单车道双车辆跟驰实车试验,采集模型测试所需的数据,并利用实测数据对模型进行了验证。试验结果显示,平均测距误差不超过3.6 m,预警模型能够准确给出预警信息,对提高车辆行驶主动安全性具有重要意义。

关 键 词:碰撞预警算法 机器视觉 

分 类 号:U4[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象