Calculation of the extreme ultraviolet radiation of the earth's plasmasphere  被引量:4

Calculation of the extreme ultraviolet radiation of the earth's plasmasphere

在线阅读下载全文

作  者:FOK Mei-Ching 

机构地区:[1]NASA Goddard Space Flight Center,Greenbelt,MD 20771,USA

出  处:《Science China(Technological Sciences)》2010年第1期200-205,共6页中国科学(技术科学英文版)

基  金:supported by the National Natural Science Foundation of China (Grants No. 40774098,40774079 and 40890160);the National Hi-Tech Research and Development Program of China ("863" Project) (Grant No.2007AA12Z314);the Chinese Academy of Sciences Innovation Program

摘  要:The dynamic global core plasma model(DGCPM) is used in this paper to calculate the He+ density distribution of the Earth's plasmasphere and to investigate the configurations and 30.4 nm radiation properties of the plasmasphere.Validation comparisons between the simulation results and IMAGE mission observations show:That the equatorial structure of the plasmapause is mainly located near 5.5 RE and the typical scale of plasmasphere shrinking or expansion within 10 min is approximately 0.1 RE;that the plasmaspheric shoulders are formed and rotate noon-ward from the dawn sector under the conditions of strong southward turning of the interplanetary magnetic field(IMF);that the plasmaspheric plumes will rotate dawn-ward from the night sector and become narrow for the southward turning of the IMF.The simulated images from the lunar orbit show that the plasmasphere locating within the geocentric distance of 5.5 RE corresponds to field of view(FOV) of 10.7°×10.7° for the moon-based EUV imager,and that the 30.4 nm radiation intensity of the plasmasphere is 0.1-11.4 R.The plasmaspheric shoulders and plumes locating toward the moon-side are for the first time simulated with typical scale level of 0.1 RE from the side view of the moon.These simulated results provide an important theoretical basis for the lunar-based EUV camera design.The dynamic global core plasma model(DGCPM) is used in this paper to calculate the He+ density distribution of the Earth’s plasmasphere and to investigate the configurations and 30.4 nm radiation properties of the plasmasphere.Validation comparisons between the simulation results and IMAGE mission observations show:That the equatorial structure of the plasmapause is mainly located near 5.5 RE and the typical scale of plasmasphere shrinking or expansion within 10 min is approximately 0.1 RE;that the plasmaspheric shoulders are formed and rotate noon-ward from the dawn sector under the conditions of strong southward turning of the interplanetary magnetic field(IMF);that the plasmaspheric plumes will rotate dawn-ward from the night sector and become narrow for the southward turning of the IMF.The simulated images from the lunar orbit show that the plasmasphere locating within the geocentric distance of 5.5 RE corresponds to field of view(FOV) of 10.7°×10.7° for the moon-based EUV imager,and that the 30.4 nm radiation intensity of the plasmasphere is 0.1-11.4 R.The plasmaspheric shoulders and plumes locating toward the moon-side are for the first time simulated with typical scale level of 0.1 RE from the side view of the moon.These simulated results provide an important theoretical basis for the lunar-based EUV camera design.

关 键 词:earth’s PLASMASPHERE dynamic global CORE plasma model EXTREME ULTRAVIOLET radiation lunar-based imaging 

分 类 号:P352[天文地球—空间物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象