Dynamic subsidence prediction of ground surface above salt cavern gas storage considering the creep of rock salt  被引量:8

Dynamic subsidence prediction of ground surface above salt cavern gas storage considering the creep of rock salt

在线阅读下载全文

作  者:WANG TongTao1, YAN XiangZhen1, YANG XiuJuan1 & YANG HengLin2 1 College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266555, China 2 CNPC Drilling Research Institute, Beijing 100097, China 

出  处:《Science China(Technological Sciences)》2010年第12期3197-3202,共6页中国科学(技术科学英文版)

基  金:supported by the National Science and Technology Major Project of China (Grant Nos. 2008ZX05017, 2008ZX05036);the Excellent Doctor Degree Dissertation Training Program of China University of Petroleum (Grant No. Z10-10)

摘  要:A new model is proposed to predict the dynamic subsidence of ground surface above salt cavern gas storage during the leaching and storage, which takes into account the creep of rock salt. In the model, the extended form of Gaussian curve is adopted to figure out the shape of subsidence areas. The corresponding theoretical formulas are derived. In addition, parameters are studied to investigate the surface subsidence as a function of the salt ejection rate, internal pressure, buried depth, diameter, height, running time, etc. Through an example, the subsidence of the salt cavern gas storage located at Jiangsu of China obtained by the new model was compared with those by Peter A F formula, Schober & Sroka formula and FLAC3D through simulation. The results showed the proposed model is precise and correct, and can meet the actual engineering demands. The surface subsidence is equidirectional with the increase of salt ejection rate, depth, diameter, height, and running time, but reverse to the increase of internal pressure. The depth, diameter, running time and internal pressure have great effects on the subsidence, whereas the salt ejection rate and height have little influences on it.A new model is proposed to predict the dynamic subsidence of ground surface above salt cavern gas storage during the leaching and storage, which takes into account the creep of rock salt. In the model, the extended form of Gaussian curve is adopted to figure out the shape of subsidence areas. The corresponding theoretical formulas are derived. In addition, parameters are studied to investigate the surface subsidence as a function of the salt ejection rate, internal pressure, buried depth, diameter, height, running time, etc. Through an example, the subsidence of the salt cavern gas storage located at Jiangsu of China obtained by the new model was compared with those by Peter A F formula, Schober & Sroka formula and FLAC3D through simulation. The results showed the proposed model is precise and correct, and can meet the actual engineering demands. The surface subsidence is equidirectional with the increase of salt ejection rate, depth, diameter, height, and running time, but reverse to the increase of internal pressure. The depth, diameter, running time and internal pressure have great effects on the subsidence, whereas the salt ejection rate and height have little influences on it.

关 键 词:SALT CAVERN gas storage dynamic SUBSIDENCE CREEP of rock SALT extended form of GAUSSIAN curve calculation model 

分 类 号:P642.26[天文地球—工程地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象