出 处:《Science China(Technological Sciences)》2010年第12期3248-3257,共10页中国科学(技术科学英文版)
基 金:supported by the Special Funds for Major State Basic Research Projects of China (973 Program) (Grant No. 2009CB724501);the Natural Science Foundation Project of CQ CSTC (2008BB6157)
摘 要:Icicles are often formed under the downside surface of conductor in the wet growth icing of overhead power line. When the ice deposit around overhead power line is molten by Joule heat produced by current, the pattern of heat transfer of ice deposit with icicles is dissimilar to that without icicle, so the ice-melting model for the columnar icing conductor cannot be applied to icicle-shaped icing conductor. According to the heat-transfer characteristic of the icicle-shaped icing conductor, this paper puts forward a DC ice-melting model for the icicle-shaped icing conductor. Because this full model includes three-dimensional heat-transfer and interface movement, which cannot be solved in closed form, a finite element scheme in space-domain and a finite difference scheme in time-domain are employed to discretize the governing equations. Firstly the whole ice-melting process on the icicle-shaped icing conductor is simulated by this model. Then the simulated results are validated by ice-melting experiments in the artificial chamber. The study from the model and the experiments shows that the size and length of icicle as well as the space between the adjacent icicles are factors to affect ice-melting. With the shorter icicle space, the bigger icicle size and the longer icicle-length, the surface of ice layer is enlarged and then more heat is taken away by the convection and radiation, so the ice melting time will get longer.Icicles are often formed under the downside surface of conductor in the wet growth icing of overhead power line. When the ice deposit around overhead power line is molten by Joule heat produced by current, the pattern of heat transfer of ice deposit with icicles is dissimilar to that without icicle, so the ice-melting model for the columnar icing conductor cannot be applied to icicle-shaped icing conductor. According to the heat-transfer characteristic of the icicle-shaped icing conductor, this paper puts forward a DC ice-melting model for the icicle-shaped icing conductor. Because this full model includes three-dimensional heat-transfer and interface movement, which cannot be solved in closed form, a finite element scheme in space-domain and a finite difference scheme in time-domain are employed to discretize the governing equations. Firstly the whole ice-melting process on the icicle-shaped icing conductor is simulated by this model. Then the simulated results are validated by ice-melting experiments in the artificial chamber. The study from the model and the experiments shows that the size and length of icicle as well as the space between the adjacent icicles are factors to affect ice-melting. With the shorter icicle space, the bigger icicle size and the longer icicle-length, the surface of ice layer is enlarged and then more heat is taken away by the convection and radiation, so the ice melting time will get longer.
关 键 词:power line ICING ICE STORM ICE MELTING icicle
分 类 号:TM75[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...