Numerical simulation of sediment erosion by submerged jets using an Eulerian model  被引量:6

Numerical simulation of sediment erosion by submerged jets using an Eulerian model

在线阅读下载全文

作  者:QIAN ZhongDong1, HU XiaoQing1, HUAI WenXin1 & XUE WanYun1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China 

出  处:《Science China(Technological Sciences)》2010年第12期3324-3330,共7页中国科学(技术科学英文版)

基  金:supported by the National Basic Research Program of China ("973" Program) (Grant No. 2007CB714106);the National Natural Science Foundation of China (Grant Nos. 51079106, 10972163)

摘  要:The erosion of loose beds by submerged circular impinging vertical turbulent jets is simulated using an Eulerian two-phase model which implements Euler-Euler coupled governing equations for fluid and solid phases, and a modified k-ε turbulence closure for the fluid phase. Both flow-particle and particle-particle interactions are considered in this model. The predictions of eroded bed profiles agree well with previous laboratory measurements and self-designed experiments. Analysis of the simulated results reveals that the velocity field of the jet water varies with various scouring intensities, that the scour depth and shape are mainly influenced by the driving force of the water when the density, diameter and porosity of the sand are the same, and that the porosity is an important contributor to sediment erosion. In this study, the scour depth, the height of dune and the velocity of the pore water increase with increasing porosity.The erosion of loose beds by submerged circular impinging vertical turbulent jets is simulated using an Eulerian two-phase model which implements Euler-Euler coupled governing equations for fluid and solid phases, and a modified k-ε turbulence closure for the fluid phase. Both flow-particle and particle-particle interactions are considered in this model. The predictions of eroded bed profiles agree well with previous laboratory measurements and self-designed experiments. Analysis of the simulated results reveals that the velocity field of the jet water varies with various scouring intensities, that the scour depth and shape are mainly influenced by the driving force of the water when the density, diameter and porosity of the sand are the same, and that the porosity is an important contributor to sediment erosion. In this study, the scour depth, the height of dune and the velocity of the pore water increase with increasing porosity.

关 键 词:SEDIMENT EROSION JET flow EULERIAN model NUMERICAL simulation 

分 类 号:O358[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象