出 处:《Science China(Technological Sciences)》2010年第3期612-622,共11页中国科学(技术科学英文版)
基 金:supported by the National Natural Science Foundation of China (Grant Nos.10732020,10872010);the National Science Fund for Distinguished Young Scholars (Grant No.10425209)
摘 要:An asymptotic perturbation method is presented based on the Fourier expansion and temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported angle-ply composite laminated rectangular thin plate with parametric and external excitations.According to the Reddy's third-order plate theory,the governing equations of motion for the angle-ply composite laminated rectangular thin plate are derived by using the Hamilton's principle.Then,the Galerkin procedure is applied to the partial differential governing equation to obtain a two-degrees-of-freedom nonlinear system including the quadratic and cubic nonlinear terms.Such equations are utilized to deal with the resonant case of 1:1 internal resonance and primary parametric resonance-1/2 subharmonic resonance.Furthermore,the stability analysis is given for the steady-state solutions of the averaged equation.Based on the averaged equation obtained by the asymptotic perturbation method,the phase portrait and power spectrum are used to analyze the multi-pulse chaotic motions of the angle-ply composite laminated rectangular thin plate.Under certain conditions the various chaotic motions of the angle-ply composite laminated rectangular thin plate are found.An asymptotic perturbation method is presented based on the Fourier expansion and temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported angle-ply composite laminated rectangular thin plate with parametric and external excitations.According to the Reddy’s third-order plate theory,the governing equations of motion for the angle-ply composite laminated rectangular thin plate are derived by using the Hamilton’s principle.Then,the Galerkin procedure is applied to the partial differential governing equation to obtain a two-degrees-of-freedom nonlinear system including the quadratic and cubic nonlinear terms.Such equations are utilized to deal with the resonant case of 1:1 internal resonance and primary parametric resonance-1/2 subharmonic resonance.Furthermore,the stability analysis is given for the steady-state solutions of the averaged equation.Based on the averaged equation obtained by the asymptotic perturbation method,the phase portrait and power spectrum are used to analyze the multi-pulse chaotic motions of the angle-ply composite laminated rectangular thin plate.Under certain conditions the various chaotic motions of the angle-ply composite laminated rectangular thin plate are found.
关 键 词:ANGLE-PLY composite LAMINATED plate THIRD-ORDER SHEAR deformation theory PARAMETRIC excitation CHAOTIC motion
分 类 号:TB33[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...