Electrical characteristics of Pt-ZnO Schottky nano-contact  

Electrical characteristics of Pt-ZnO Schottky nano-contact

在线阅读下载全文

作  者:SHAO ZhengZheng , ZHANG XueAo, WANG XiaoFeng & CHANG ShengLi Center of Materials Science, College of Science, National University of Defense Technology, Changsha 410073, China 

出  处:《Science China(Physics,Mechanics & Astronomy)》2010年第1期64-67,共4页中国科学:物理学、力学、天文学(英文版)

基  金:Supported by the National High Technology Research and Development Program of China (Grant No. 2009AA01Z114);the Advanced Research Foundation of National University of Defense Technology (Grant No.JC08-02-08)

摘  要:The electrical characteristics of Pt-ZnO Schottky nano-contact have been studied. Well aligned ZnO nanorod arrays were synthesized by two-step wet-chemical method. A Pt-coated conducting probe of atomic force microscope was placed on the head face of the ZnO nanorod, thereby forming a Pt-ZnO nano-contact. The I-V characteristic curve shows that the Pt-ZnO nano-contact exhibits rectifying effect, like a Schottky diode with an ideality factor of 3.2 and a reverse-bias breakdown voltage more than -10 V. The study suggests that a high electric field is induced on the ZnO beneath the contact point when a bias voltage is applied, hence, the Schottky barrier thickness is decreased, and results in easier tunneling across the Pt-ZnO interface and a large ideality factor.The electrical characteristics of Pt-ZnO Schottky nano-contact have been studied. Well aligned ZnO nanorod arrays were synthesized by two-step wet-chemical method. A Pt-coated conducting probe of atomic force microscope was placed on the head face of the ZnO nanorod, thereby forming a Pt-ZnO nano-contact. The I-V characteristic curve shows that the Pt-ZnO nano-contact exhibits rectifying effect, like a Schottky diode with an ideality factor of 3.2 and a reverse-bias breakdown voltage more than -10 V. The study suggests that a high electric field is induced on the ZnO beneath the contact point when a bias voltage is applied, hence, the Schottky barrier thickness is decreased, and results in easier tunneling across the Pt-ZnO interface and a large ideality factor.

关 键 词:ZNO nanorod SCHOTTKY CONTACT IDEALITY FACTOR 

分 类 号:TN311.7[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象