检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:FU JingLi1,LI XiaoWei2,LI ChaoRong1,ZHAO WeiJia3 & CHEN BenYong4 1 Institute of Mathematical Physics,Zhejiang Sci-Tech University,Hangzhou 310018,China 2 Department of Physics,Shangqiu Normal University,Shangqiu 476000,China 3 Department of Mathematics,Qingdao University,Qingdao 266071,China 4 Faculty of Mechanical Engineering & Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China
出 处:《Science China(Physics,Mechanics & Astronomy)》2010年第9期1699-1706,共8页中国科学:物理学、力学、天文学(英文版)
基 金:supported by the National Natural Science Foundation of China (Grant No.10672143)
摘 要:Based on the property of the discrete model entirely inheriting the symmetry of the continuous system,we present a method to construct exact solutions with continuous groups of transformations in discrete nonconservative systems.The Noether's identity of the discrete nonconservative system is obtained.The symmetric discrete Lagrangian and symmetric discrete nonconservative forces are defined for the system.Generalized quasi-extremal equations of discrete nonconservative systems are presented.Discrete conserved quantities are derived with symmetries associated with the continuous system.We have also found that the existence of the one-parameter symmetry group provides a reduction to a conserved quantity;but the existence of a two-parameter symmetry group makes it possible to obtain an exact solution for a discrete nonconservative system.Several examples are discussed to illustrate these results.Based on the property of the discrete model entirely inheriting the symmetry of the continuous system,we present a method to construct exact solutions with continuous groups of transformations in discrete nonconservative systems.The Noether’s identity of the discrete nonconservative system is obtained.The symmetric discrete Lagrangian and symmetric discrete nonconservative forces are defined for the system.Generalized quasi-extremal equations of discrete nonconservative systems are presented.Discrete conserved quantities are derived with symmetries associated with the continuous system.We have also found that the existence of the one-parameter symmetry group provides a reduction to a conserved quantity;but the existence of a two-parameter symmetry group makes it possible to obtain an exact solution for a discrete nonconservative system.Several examples are discussed to illustrate these results.
关 键 词:DISCRETE NONCONSERVATIVE system symmetry CONSERVED quantity quasi-extremal equation exact solution
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13