Dynamic damage and stress-strain relations of ultra-high performance cementitious composites subjected to repeated impact  被引量:7

Dynamic damage and stress-strain relations of ultra-high performance cementitious composites subjected to repeated impact

在线阅读下载全文

作  者:LAI JianZhong1 & SUN Wei2 1 Department of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China 2 College of Materials Science and Engineering,Southeast University,Nanjing 211189,China 

出  处:《Science China(Technological Sciences)》2010年第6期1520-1525,共6页中国科学(技术科学英文版)

基  金:supported by the National Natural Science Foundation of China (Grant No.50808101);Jiangsu Provincial Program for Basic Research (Natural Science Foundation) (Grant No.BK2008417);China Postdoctoral Science Foundation (Grant No.20080431100);Excellence Plan "Zijin Star" of NJUST

摘  要:Ultra-high performance cementitious composites (UHPCC) were prepared by replacing 60% of cement with ultra-fine industrial waste powders.The dynamic damage and compressive stress-strain relations of UHPCC were studied using split Hopkinson pressure bar (SHPB).The damage of UHPCC subjected to repeated impact was measured by the ultrasonic pulse velocity method.Results show that the dynamic damage of UHPCC increases linearly with impact times and the abilities of repeated impact resistance of UHPCC are improved with increasing fiber volume fraction.The stress waves on impact were recorded and the average stress,strain and strain rate of UHPCC were calculated based on the wave propagation theory.The effects of strain rate,fibers volume fraction and impact times on the stress-strain relations of UHPCC were studied.Results show that the peak stress and elastic modulus decrease while the strain rate and peak strain increase gradually with increasing impact times.Ultra-high performance cementitious composites (UHPCC) were prepared by replacing 60% of cement with ultra-fine industrial waste powders.The dynamic damage and compressive stress-strain relations of UHPCC were studied using split Hopkinson pressure bar (SHPB).The damage of UHPCC subjected to repeated impact was measured by the ultrasonic pulse velocity method.Results show that the dynamic damage of UHPCC increases linearly with impact times and the abilities of repeated impact resistance of UHPCC are improved with increasing fiber volume fraction.The stress waves on impact were recorded and the average stress,strain and strain rate of UHPCC were calculated based on the wave propagation theory.The effects of strain rate,fibers volume fraction and impact times on the stress-strain relations of UHPCC were studied.Results show that the peak stress and elastic modulus decrease while the strain rate and peak strain increase gradually with increasing impact times.

关 键 词:ultra-high performance cementitious composites (UHPCC) SPLIT Hopkinson pressure BAR (SHPB) repeated IMPACT DAMAGE STRESS-STRAIN 

分 类 号:TB332[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象