机构地区:[1]Department of Civil Engineering,Zhejiang University,Zijingang Campus,Hangzhou 310058,China [2]Department of Engineering Mechanics,Zhejiang University,Yuquan Campus,Hangzhou 310027,China [3]Department of Mechanical Engineering,University of Cincinnati,Cincinnati,Ohio 45221-0072,USA
出 处:《Science China(Technological Sciences)》2010年第8期2160-2171,共12页中国科学(技术科学英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.10725210);the National Basic Research Program of China(Grant No.2009CB623200)
摘 要:A fast multipole boundary element method(FMBEM)is developed for the analysis of 2D linear viscoelastic composites with imperfect viscoelastic interfaces.The transformed fast multipole formulations are established using the time domain method. To simulate the viscoelastic behavior of imperfect interfaces that are frequently encountered in practice,the Kelvin type model is introduced.The FMBEM is further improved by incorporating naturally the interaction among inclusions as well as eliminating the phenomenon of material penetration.Since all the integrals are evaluated analytically,high accuracy and fast convergence of the numerical scheme are obtained.Several numerical examples,including planar viscoelastic composites with a single inclusion or randomly distributed multi-inclusions are presented.The numerical results are compared with the developed analytical solutions,which illustrates that the proposed FMBEM is very efficient in determining the macroscopic viscoelastic behavior of the particle-reinforced composites with the presence of imperfect interfaces.The laboratory measurements of the mixture creep compliance of asphalt concrete are also compared with the prediction by the developed model.A fast multipole boundary element method(FMBEM)is developed for the analysis of 2D linear viscoelastic composites with imperfect viscoelastic interfaces.The transformed fast multipole formulations are established using the time domain method. To simulate the viscoelastic behavior of imperfect interfaces that are frequently encountered in practice,the Kelvin type model is introduced.The FMBEM is further improved by incorporating naturally the interaction among inclusions as well as eliminating the phenomenon of material penetration.Since all the integrals are evaluated analytically,high accuracy and fast convergence of the numerical scheme are obtained.Several numerical examples,including planar viscoelastic composites with a single inclusion or randomly distributed multi-inclusions are presented.The numerical results are compared with the developed analytical solutions,which illustrates that the proposed FMBEM is very efficient in determining the macroscopic viscoelastic behavior of the particle-reinforced composites with the presence of imperfect interfaces.The laboratory measurements of the mixture creep compliance of asphalt concrete are also compared with the prediction by the developed model.
关 键 词:boundary element method fast multipole method VISCOELASTICITY imperfect interface multi-inclusion composite
分 类 号:TB33[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...