Experimental study of dynamic mechanical properties of reactive powder concrete under high-strain-rate impacts  被引量:9

Experimental study of dynamic mechanical properties of reactive powder concrete under high-strain-rate impacts

在线阅读下载全文

作  者:JU Yang1,2,LIU HongBin1,SHENG GuoHua1,3 & WANG HuiJie1 1 State Key Laboratory of Coal Resources and Safe Mining,Beijing Key Laboratory of Fracture and Damage Mechanics of Rocks and Concrete,China University of Mining and Technology,Beijing 100083,China 2 Department of Mechanical and Manufacturing Engineering,University of Calgary,2500 University Drive,AB T2N 1N4,Canada 3 School of Resources and Civil Engineering,Northeastern University,Shenyang 110004,China 

出  处:《Science China(Technological Sciences)》2010年第9期2435-2449,共15页中国科学(技术科学英文版)

基  金:supported by the National Natural Science Foundation of China (Grant No. 50974125);the National Basic Research Project of China ("973" Project) (Grant Nos. 2010CB226804, 2002CB412705);the Natural Sciences and Engineering Research Council of Canada (PGS-D2-2006) and the Beijing Key Laboratory Projects

摘  要:The dynamic mechanical properties of reactive powder concrete subjected to compressive impacts with high strain rates ranging from 10 to 1.1×102 s-1 were investigated by means of SHPB (split-Hopkinson-pressure-bar) tests of the cylindrical specimens with five different steel fiber volumetric fractions.The properties of wave stress transmission,failure,strength,and energy consumption of RPC with varied fiber volumes and impact strain rates were analyzed.The influences of impact strain rates and fiber volumes on those properties were characterized as well.The general forms of the dynamic stress-strain relationships of RPC were modeled based on the experimental data.The investigations indicate that for the plain RPC the stress response is greater than the strain response,showing strong brittle performance.The RPC with a certain volume of fibers sustains higher strain rate impact and exhibits better deformability as compared with the plain RPC.With a constant fiber fraction,the peak compressive strength,corresponding peak strain and the residual strain of the fiber-reinforced RPC rise by varying amounts when the impact strain rate increases,with the residual strain demonstrating the greatest increment.Elevating the fiber content makes trivial contribution to improving the residual deformability of RPC when the impact strain rate is constant.The tests also show that the fiber content affects the peak compressive strength and the peak deformability of RPC in a different manner.With a constant impact strain rate and the fiber fraction less than 1.75%,the peak compressive strength rises with an increasing fiber volume.The peak compressive strength tends to decrease as the fiber volume exceeds 1.75%.The corresponding peak strain,however,incessantly rises with the increasing fiber volume.The total energy Edisp that RPC consumed during the period from the beginning of impacts to the time of residual strains elevates with the fiber volume increment as long as the fiber fraction is not larger than 2%.It turns to decrease if The dynamic mechanical properties of reactive powder concrete subjected to compressive impacts with high strain rates ranging from 10 to 1.1×102 s-1 were investigated by means of SHPB (split-Hopkinson-pressure-bar) tests of the cylindrical specimens with five different steel fiber volumetric fractions.The properties of wave stress transmission,failure,strength,and energy consumption of RPC with varied fiber volumes and impact strain rates were analyzed.The influences of impact strain rates and fiber volumes on those properties were characterized as well.The general forms of the dynamic stress-strain relationships of RPC were modeled based on the experimental data.The investigations indicate that for the plain RPC the stress response is greater than the strain response,showing strong brittle performance.The RPC with a certain volume of fibers sustains higher strain rate impact and exhibits better deformability as compared with the plain RPC.With a constant fiber fraction,the peak compressive strength,corresponding peak strain and the residual strain of the fiber-reinforced RPC rise by varying amounts when the impact strain rate increases,with the residual strain demonstrating the greatest increment.Elevating the fiber content makes trivial contribution to improving the residual deformability of RPC when the impact strain rate is constant.The tests also show that the fiber content affects the peak compressive strength and the peak deformability of RPC in a different manner.With a constant impact strain rate and the fiber fraction less than 1.75%,the peak compressive strength rises with an increasing fiber volume.The peak compressive strength tends to decrease as the fiber volume exceeds 1.75%.The corresponding peak strain,however,incessantly rises with the increasing fiber volume.The total energy Edisp that RPC consumed during the period from the beginning of impacts to the time of residual strains elevates with the fiber volume increment as long as the fiber fraction is not larger than 2%.It turns to decrease if

关 键 词:impact REACTIVE powder concrete (RPC) high strain rate DYNAMIC strength energy CONSUMPTION DYNAMIC STRESS-STRAIN response 

分 类 号:TU528.01[建筑科学—建筑技术科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象