The socle of the last term in a minimal injective resolution  

The socle of the last term in a minimal injective resolution

在线阅读下载全文

作  者:Huang ZhaoYong Wang Yao 

机构地区:[1]Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China [2]Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China

出  处:《Science China Mathematics》2010年第7期1714-1720,共7页中国科学:数学(英文版)

基  金:supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060284002);National Natural Science Foundation of China (Grant No. 10771095);Natural Science Foundation of Jiangsu Province of China (Grant No. BK2007517)

摘  要:Let Λ and Γ be left and right Noetherian rings and Λ U a generalized tilting module with Γ = End( Λ U ). For a non-negative integer k, if Λ U is (k - 2)-Gorenstein with the injective dimensions of Λ U and U Γ being k, then the socle of the last term in a minimal injective resolution of Λ U is non-zero.Let Λ and Γ be left and right Noetherian rings and Λ U a generalized tilting module with Γ = End( Λ U ). For a non-negative integer k, if Λ U is (k - 2)-Gorenstein with the injective dimensions of Λ U and U Γ being k, then the socle of the last term in a minimal injective resolution of Λ U is non-zero.

关 键 词:generalized tilting MODULES (quasi) k-Gorenstein MODULES SOCLE MINIMAL INJECTIVE RESOLUTION INJECTIVE dimension 

分 类 号:N[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象