检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Science China Mathematics》2010年第8期1979-1988,共10页中国科学:数学(英文版)
基 金:supported by Program for New Century Excellent Talents in University,National Basic Research Program of China (973 Project) (Grant No.2006CB805901);National Natural Science Foundation of China (Grant No.10721091)
摘 要:Explicit convergence rates in geometric and strong ergodicity for denumerable discrete time Markov chains with general reversible transition matrices are obtained in terms of the geometric moments or uniform moments of the hitting times to a fixed point.Another way by Lyapunov's drift conditions is also used to derive these convergence rates.As a typical example,the discrete time birth-death process(random walk) is studied and the explicit criteria for geometric ergodicity are presented.Explicit convergence rates in geometric and strong ergodicity for denumerable discrete time Markov chains with general reversible transition matrices are obtained in terms of the geometric moments or uniform moments of the hitting times to a fixed point.Another way by Lyapunov’s drift conditions is also used to derive these convergence rates.As a typical example,the discrete time birth-death process(random walk) is studied and the explicit criteria for geometric ergodicity are presented.
关 键 词:MARKOV chain spectral theory convergence rate geometric ERGODICITY strong ERGODICITY Lyapunov’s condition
分 类 号:O211.62[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69