检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LIANG GuiZhao & ZHAO Wei Key Laboratory of Biorheological Science and Technology(Chongqing University),Ministry of Education Bioengineering College,Chongqing University,Chongqing 400044,China
出 处:《Science China Chemistry》2010年第5期1160-1166,共7页中国科学(化学英文版)
基 金:supported by the National Natural Science Foundation of China(10901169);Innovation Ability Training Foundation of Chongqing University(CDCX008)
摘 要:This paper offers a new combined approach to predict and characterize β-turns in proteins.The approach includes two key steps,i.e.,how to represent the features of β-turns and how to develop a predictor.The first step is to use factor analysis scales of generalized amino acid information(FASGAI),involving hydrophobicity,alpha and turn propensities,bulky properties,compositional characteristics,local flexibility and electronic properties,to represent the features of β-turns in proteins.The second step is to construct a support vector machine(SVM) predictor of β-turns based on 426 training proteins by a sevenfold cross validation test.The SVM predictor thus predicted β-turns on 547 and 823 proteins by an external validation test,separately.Our results are compared with the previously best known β-turn prediction methods and are shown to give comparative performance.Most significantly,the SVM model provides some information related to β-turn residues in proteins.The results demonstrate that the present combination approach may be used in the prediction of protein structures.This paper offers a new combined approach to predict and characterize β-turns in proteins.The approach includes two key steps,i.e.,how to represent the features of β-turns and how to develop a predictor.The first step is to use factor analysis scales of generalized amino acid information(FASGAI),involving hydrophobicity,alpha and turn propensities,bulky properties,compositional characteristics,local flexibility and electronic properties,to represent the features of β-turns in proteins.The second step is to construct a support vector machine(SVM) predictor of β-turns based on 426 training proteins by a sevenfold cross validation test.The SVM predictor thus predicted β-turns on 547 and 823 proteins by an external validation test,separately.Our results are compared with the previously best known β-turn prediction methods and are shown to give comparative performance.Most significantly,the SVM model provides some information related to β-turn residues in proteins.The results demonstrate that the present combination approach may be used in the prediction of protein structures.
关 键 词:β-turns factor analysis scales of generalized AMINO ACID INFORMATION support VECTOR machine
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.121.38