Error estimate of the homogenization solution for elliptic problems with small periodic coefficients on L~∞(Ω)  被引量:4

Error estimate of the homogenization solution for elliptic problems with small periodic coefficients on L~∞(Ω)

在线阅读下载全文

作  者:HE WenMing1,2 & CUI JunZhi3 1Department of Mathematics,Wenzhou University,Wenzhou 325035,China 2School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China 3LSEC,ICMSEC,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China 

出  处:《Science China Mathematics》2010年第5期194-215,共22页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos.60971121,10590353,90916027,10725210);Major State Basic Research Development Program of China (973Program) (Grant No.2010CB832702);the State Key Laboratory of Science and Engineering Computing,Natural Science Foundation of Zhejiang Province,China (Grant No.Y6090108);Postdoctoral Science Foundation of China (Grant No.20090451454)

摘  要:In this paper,we discuss the multi-scale homogenization theory for the second order elliptic problems with small periodic coefficients of the form xi(aij(xε) uεx(jx)) = f(x).Assuming n = 2 and u0 ∈ W 1,∞(Ω),we present an error estimate between the homogenization solution u0(x) and the exact solution uε(x) on the Sobolev space L∞(Ω).In this paper,we discuss the multi-scale homogenization theory for the second order elliptic problems with small periodic coefficients of the form xi(aij(xε) uεx(jx)) = f(x).Assuming n = 2 and u0 ∈ W 1,∞(Ω),we present an error estimate between the homogenization solution u0(x) and the exact solution uε(x) on the Sobolev space L∞(Ω).

关 键 词:MULTI-SCALE HOMOGENIZATION theory HOMOGENIZATION SOLUTION second order ELLIPTIC equations with SMALL periodic coeficients 

分 类 号:O175.25[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象