Isometries in hyperbolic spaces  被引量:1

Isometries in hyperbolic spaces

在线阅读下载全文

作  者:HUANG ManZi WANG XianTao WANG YueFei 

机构地区:[1]Department of Mathematics,Hunan Normal University,Changsha 410081,China [2]Hua Loo-Keng Key Laboratory of Mathematics,Academy of Mathematics and System Science,Chinese Academy of Sciences,Beijing 100190,China

出  处:《Science China Mathematics》2010年第1期71-86,共16页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No.10771059);Tianyuan Foundation

摘  要:Suppose that f:Hn → Hn (n≥2) maps any r-dimensional hyperplane (1≤r【n) into an r-dimensional hyperplane. In this paper, we prove that f is an isometry if and only if f is a surjective map. This result gives an affirmative answer to a recent conjecture due to Li and Yao.Suppose that f:Hn → Hn (n≥2) maps any r-dimensional hyperplane (1≤r<n) into an r-dimensional hyperplane. In this paper, we prove that f is an isometry if and only if f is a surjective map. This result gives an affirmative answer to a recent conjecture due to Li and Yao.

关 键 词:surjective MAP GEODESIC HYPERPLANE ISOMETRY M¨obius TRANSFORMATION 

分 类 号:N[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象