The optimal upper bound of the number of generalized Euler configurations  

The optimal upper bound of the number of generalized Euler configurations

在线阅读下载全文

作  者:LI ZhengDong 1,2,& FU YanNing 11 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China 2 Graduate University of Chinese Academy of Sciences, Beijing 100039, China 

出  处:《Science China Mathematics》2010年第2期401-412,共12页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos.10473025, 10833001)

摘  要:Consider a generalized 3-body problem. The attraction force between any two bodies is proportional to the two "masses" and the b-th power of the mutual distance. Albouy and Fu have obtained the optimal upper bound of the number of generalized Euler configurations for the cases b 1 and b = 2, 3. This paper obtains the optimal upper bound for the remaining real values of b in a systematic way.Consider a generalized 3-body problem. The attraction force between any two bodies is proportional to the two "masses" and the b-th power of the mutual distance. Albouy and Fu have obtained the optimal upper bound of the number of generalized Euler configurations for the cases b 1 and b = 2, 3. This paper obtains the optimal upper bound for the remaining real values of b in a systematic way.

关 键 词:THREE-BODY problem central CONFIGURATION generalized EULER CONFIGURATION quasi-polynomial equation 

分 类 号:P132[天文地球—天体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象