Factorization of proper holomorphic maps on irreducible bounded symmetric domains of rank≥2  被引量:2

Factorization of proper holomorphic maps on irreducible bounded symmetric domains of rank≥2

在线阅读下载全文

作  者:MOK Ngaiming NG Sui-Chung 

机构地区:[1]Department of Mathematics, The University of Hong Kong

出  处:《Science China Mathematics》2010年第3期813-826,共14页中国科学:数学(英文版)

基  金:supported by the GRF7032/08P of the HKRGC, Hong Kong;National Natural Science Foundation of China (Grant No. 10971156)

摘  要:We obtain rigidity results on arbitrary proper holomorphic maps F from an irreducible bounded symmetric domain Ω of rank ≥2 into any complex space Z. After lifting to the normalization of the subvariety F (Ω) Z, we prove that F must be the canonical projection map to the quotient space of Ω by a finite group of automorphisms. The approach is along the line of the works of Mok and Tsai by considering radial limits of bounded holomorphic functions derived from F and proving that proper holomorphic maps between bounded symmetric domains preserve certain totally geodesic subdomains. In contrast to the previous works, in general we have to deal with multivalent holomorphic maps for which Fatou’s theorem cannot be applied directly. We bypass the difficulty by devising a limiting process for taking radial limits of correspondences arising from proper holomorphic maps and by elementary estimates allowing us to define distinct univalent branches of the underlying multivalent map on certain subsets. As a consequence of our rigidity result, with the exception of Type-IV domains, any proper holomorphic map f : Ω→ D of Ω onto a bounded convex domain D is necessarily a biholomorphism. In the exceptional case where Ω is a Type-IV domain, either f is a biholomorphism or it is a double cover branched over a totally geodesic submanifold which can be explicitly described.We obtain rigidity results on arbitrary proper holomorphic maps F from an irreducible bounded symmetric domain Ω of rank ≥2 into any complex space Z. After lifting to the normalization of the subvariety F (Ω) Z, we prove that F must be the canonical projection map to the quotient space of Ω by a finite group of automorphisms. The approach is along the line of the works of Mok and Tsai by considering radial limits of bounded holomorphic functions derived from F and proving that proper holomorphic maps between bounded symmetric domains preserve certain totally geodesic subdomains. In contrast to the previous works, in general we have to deal with multivalent holomorphic maps for which Fatou’s theorem cannot be applied directly. We bypass the difficulty by devising a limiting process for taking radial limits of correspondences arising from proper holomorphic maps and by elementary estimates allowing us to define distinct univalent branches of the underlying multivalent map on certain subsets. As a consequence of our rigidity result, with the exception of Type-IV domains, any proper holomorphic map f : Ω→ D of Ω onto a bounded convex domain D is necessarily a biholomorphism. In the exceptional case where Ω is a Type-IV domain, either f is a biholomorphism or it is a double cover branched over a totally geodesic submanifold which can be explicitly described.

关 键 词:bounded symmetric domain PROPER HOLOMORPHIC map Fatou’s theorem correspondence DISCRIMINANT G-STRUCTURE 

分 类 号:O174.52[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象