Interface-directed sol-gel:direct fabrication of the covalently attached ultraflat inorganic oxide pattern on functionalized plastics  被引量:3

Interface-directed sol-gel:direct fabrication of the covalently attached ultraflat inorganic oxide pattern on functionalized plastics

在线阅读下载全文

作  者:GAN ShengHua,YANG Peng & YANG WanTai State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China 

出  处:《Science China Chemistry》2010年第1期173-182,287-288,共12页中国科学(化学英文版)

基  金:support from the National Natural Science Foundation of China (Grant No.50433043);the Beijing Municipal Education Commission (Grant No.XK100100433)

摘  要:For plastic electronics and optics,the fabrication of smooth,transparent and stable crack-free inorganic oxide films(and patterning) on flexible polymeric substrates with strong bonding strength and controllable thickness from nanometers to micrometers is a key but still remains a challenge.Among versatile inorganic oxides,silica oxide film as SiOx is especially important because this semiconductor material could provide crucial properties in devices or serve as a base layer for further multilayer construction.In this paper,we describe a new interface-directed sol-gel method to fabricate flexible high quality silicon oxide film onto commodity plastics.The resulting crack-free silica film has strong covalent bonding with polymer substrates,homogeneous morphology with ultralow roughness,highly optical transparency,tunable thickness from nm to μm,and easy patterning ability.Such fabrication strategy relies on a novel photocatalytic oxidation reaction by photosensitive ammonium persulfate(APS),which is able to fabricate highly reactive hydroxyl monolayer surface on inert polymeric substrates.This kind of hydroxylated surface could serve as nucleation and growth sites to initiate surface sol-gel process.As a result,well-defined SiOx film deposition(gelation) occurs,and patterned hydroxylation regions could be easily utilized to induce the formation of patterned oxide film arrays.Our strategy also excludes the requirements of clean room and vacuum devices so as to fulfill low-cost and fast fabrication demands.Two application examples from such high quality SiOx layer onto plastics are given but should not be limited within these.One is that oxygen permeation rate of SiOx deposited polymer film decreases 25 times than pristine polymer substrate,which is good for the potential packaging materials.The other one is that silanization monolayer,for example,3-aminopropyltriethoxysilane(APTES),could be successfully constructed onto silica layer through classical silanization reaction,which is applicable for many potential purFor plastic electronics and optics,the fabrication of smooth,transparent and stable crack-free inorganic oxide films(and patterning) on flexible polymeric substrates with strong bonding strength and controllable thickness from nanometers to micrometers is a key but still remains a challenge.Among versatile inorganic oxides,silica oxide film as SiOx is especially important because this semiconductor material could provide crucial properties in devices or serve as a base layer for further multilayer construction.In this paper,we describe a new interface-directed sol-gel method to fabricate flexible high quality silicon oxide film onto commodity plastics.The resulting crack-free silica film has strong covalent bonding with polymer substrates,homogeneous morphology with ultralow roughness,highly optical transparency,tunable thickness from nm to μm,and easy patterning ability.Such fabrication strategy relies on a novel photocatalytic oxidation reaction by photosensitive ammonium persulfate(APS),which is able to fabricate highly reactive hydroxyl monolayer surface on inert polymeric substrates.This kind of hydroxylated surface could serve as nucleation and growth sites to initiate surface sol-gel process.As a result,well-defined SiOx film deposition(gelation) occurs,and patterned hydroxylation regions could be easily utilized to induce the formation of patterned oxide film arrays.Our strategy also excludes the requirements of clean room and vacuum devices so as to fulfill low-cost and fast fabrication demands.Two application examples from such high quality SiOx layer onto plastics are given but should not be limited within these.One is that oxygen permeation rate of SiOx deposited polymer film decreases 25 times than pristine polymer substrate,which is good for the potential packaging materials.The other one is that silanization monolayer,for example,3-aminopropyltriethoxysilane(APTES),could be successfully constructed onto silica layer through classical silanization reaction,which is applicable for many potential pur

关 键 词:SURFACE PATTERNING silicon OXIDE SOL-GEL polymer SURFACE modification functional coatings 

分 类 号:TQ320.1[化学工程—合成树脂塑料工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象