The Novel Mechanical Property of Tongue of a Woodpecker  被引量:4

The Novel Mechanical Property of Tongue of a Woodpecker

在线阅读下载全文

作  者:P Zhou X Q Kong C W Wu Z Chen 

机构地区:[1]National Key Laboratory for Structural Analysis of Industrial Equipment,Dalian University of Technology [2]Department of Civil and Environmental Engineering,University of Missouri

出  处:《Journal of Bionic Engineering》2009年第3期214-218,共5页仿生工程学报(英文版)

基  金:supported by the National Natural Science Foundation of China (Projects Nos. 10672035,10802019,10721062 and 90816025).

摘  要:Biomaterials such as bone,teeth,nacre and silk are known to have superior mechanical properties due to their specific nanocomposite structures.Here we report that the woodpecker's tongue exhibits a novel strength and flexibility due to its special composite micro/nanostructure.The tongue consists of a flexible cartilage-and-bone skeleton covered with a thin layer tissue of high strength and elasticity.At the interface between the cartilage-and-bone skeleton and the tissue layer,there is a hierarchical fiber-typed connection.It is this special design of the tongue that makes the woodpeckers efficient in catching the insects inside trees.The special micro/nanostructures of the woodpecker's tongue show us a potential method to enhance the interfacial connection between soft and hard material layers for bio-inspired composite system designs.Biomaterials such as bone,teeth,nacre and silk are known to have superior mechanical properties due to their specific nanocomposite structures.Here we report that the woodpecker's tongue exhibits a novel strength and flexibility due to its special composite micro/nanostructure.The tongue consists of a flexible cartilage-and-bone skeleton covered with a thin layer tissue of high strength and elasticity.At the interface between the cartilage-and-bone skeleton and the tissue layer,there is a hierarchical fiber-typed connection.It is this special design of the tongue that makes the woodpeckers efficient in catching the insects inside trees.The special micro/nanostructures of the woodpecker's tongue show us a potential method to enhance the interfacial connection between soft and hard material layers for bio-inspired composite system designs.

关 键 词:woodpeckcr hyoid cartllage multilevel structure tensile strength 

分 类 号:Q66[生物学—生物物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象