Anisotropism of the Non-Smooth Surface of Butterfly Wing  被引量:10

Anisotropism of the Non-Smooth Surface of Butterfly Wing

在线阅读下载全文

作  者:Gang Sun~(1,2), Yan Fang~(1,2), Qian Cong~1, Lu-quan Ren~11. Key Laboratory of Terrain-Machine Bionics Engineering (Ministry of Education, China), Jilin University,Changchun 130022, P. R. China2. School of Life Science, Changchun Normal University, Changchun 130032, P. R. China 

出  处:《Journal of Bionic Engineering》2009年第1期71-76,共6页仿生工程学报(英文版)

基  金:supported by the National Natural Science Foundation of China (Grant No. 50635030);the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20040183048);the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry

摘  要:Twenty-nine species of butterflies were collected for observation and determination of the wing surfaces using a Scanning Electron Microscope(SEM).Butterfly wing surface displays structural anisotropism in micro-,submicro- and nano-scales.The scales on butterfly wing surface arrange like overlapping roof tiles.There are submicrometric vertical gibbosities,horizontal links,and nano-protuberances on the scales.First-incline-then-drip method and first-drip-then-incline method were used to measure the Sliding Angle(SA)of droplet on butterfly wing surface by an optical Contact Angle(CA)measuring system. Relatively smaller sliding angles indicate that the butterfly wing surface has fine self-cleaning property.Significantly different SAs in various directions indicate the anisotropic self-cleaning property of butterfly wing surface.The SAs on the butterfly wing surface without scales are remarkably larger than those with scales,which proves the crucial role of scales in determining the self-cleaning property.Butterfly wing surface is a template for design and fabrication ofbiomimetic materials and self-cleaning substrates.This work may offer insights into how to design directional self-cleaning coatings and anisotropic wetting surface.Twenty-nine species of butterflies were collected for observation and determination of the wing surfaces using a Scanning Electron Microscope(SEM).Butterfly wing surface displays structural anisotropism in micro-,submicro- and nano-scales.The scales on butterfly wing surface arrange like overlapping roof tiles.There are submicrometric vertical gibbosities,horizontal links,and nano-protuberances on the scales.First-incline-then-drip method and first-drip-then-incline method were used to measure the Sliding Angle(SA)of droplet on butterfly wing surface by an optical Contact Angle(CA)measuring system. Relatively smaller sliding angles indicate that the butterfly wing surface has fine self-cleaning property.Significantly different SAs in various directions indicate the anisotropic self-cleaning property of butterfly wing surface.The SAs on the butterfly wing surface without scales are remarkably larger than those with scales,which proves the crucial role of scales in determining the self-cleaning property.Butterfly wing surface is a template for design and fabrication ofbiomimetic materials and self-cleaning substrates.This work may offer insights into how to design directional self-cleaning coatings and anisotropic wetting surface.

关 键 词:micro-/nano-structure anisotropism SELF-CLEANING SUPER-HYDROPHOBICITY sliding angle 

分 类 号:Q964[生物学—昆虫学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象