检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制工程》2009年第S3期149-150,153,共3页Control Engineering of China
基 金:国家高技术研究发展计划(863计划)基金资助项目(2007AA04Z198);新世纪优秀人才支持计划基金资助项目(NECT-05-0485);江南大学创新团队发展计划基金资助项目
摘 要:过程神经元网络(Process Neural Networks)的输入由几何点式数据变为时间信号,是瞬时输入到过程输入的推广,可看作是学习样本特征的扩展。采用基于时域特征扩展和基于正交分解特征扩展两种方式建立过程神经元网络模型,利用电力负荷数据进行网络训练和负荷预测。结果表明,基于正交分解特征扩展的过程神经元网络在训练速度、预测准确度等方面均优于基于时域特征扩展的过程神经元网络,更适于电力负荷预测应用。The input of process neural networks changed from discrete data to veritable data.As an extension to process input from instantaneous input on essence,the input can be considered as generalization of learn sample characters,and aggrandizing the sample information.The two different ways based on the time-domain feature expansion and the orthogonal decomposition feature expansion are used to establish process neural networks model.According to the data of student electric consumption in Jiangnan University,the model training and the accuracy of load forcasting are investigated.The simulation results show that the orthogonal decomposition feature expansion based process neural networks is supprior to time-domain feture expansion based proscess neural networks in training speed,veracity in prediction,and more suitable for the application of electric load forecasting.
关 键 词:过程神经元网络 时域特征扩展 正交分解特征扩展 电力负荷预测
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.122